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Abstract. In a previous paper, a new reaction kernel for the Smoluchowski equations of
aggregation was solved exactly. This kernklj, k) = 2 — ¢/ — g%, for0 < ¢ < 1 areal
positive quantity, interpolates between two well understood exactly solved cases, namely that of
K (j, k) = 2andthatoiK (j, k) = j+k. This new model, however, shows a number of unexpected
features, not found in either of the two limiting cases. It is shown that this model has a remarkable
behaviour with respect to the commonly accepted scaling theory. On the one hand, it satisfies a
rigorous form of the scaling hypothesis, but, on the other hand, it clearly violates some relations
which are ordinarily assumed to follow from it. These issues are discussed, as well as the nature
of the singular limit in whichg is very close to one, for which our kernel becomes close to the
sum kernel mentioned above. In particular, the form of the crossover between two kernels with
different degrees of homogeneity can be discussed here in an exact way.

1. Introduction

In this paper | study a model for the kinetics of irreversible aggregation solved in a previous
paper [1]. In this process, aggregates which are characterized by their massreact by
sticking to one another to form a larger aggregate:

Aj"'Ak m)AjH(. (11)
The non-negative quantities (j, k) = K (k, j) are the mass-dependent rates at which the
aggregates stick to each other. Using the law of mass-action, namely the assumption that the
collision rate between two aggregates of magsasdk is given byK (j, k) cjcx, wherec; (¢)
is the concentration of aggregate at timer, one obtains the following set of equations for
c¢;(t), which are known as the Smoluchowski equations [2]:

o0

c"j = % Z K(k, l) CkC/[(SkH’j — (Sk,j - 81,1']. (12)
k=1

The prefactor% is conventional, to account for double counting. Here, and always below,
a superimposed dot denotes differentiation with respect to tinfhese should, in general,
be solved for arbitrary non-negative initial conditior}g0). However, it is generally found
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that the qualitative behaviour for arbitrary rapidly decaying solutions is similar to that of the
‘monodisperse’ initial condition

Cj(O) = 81"1. (13)

Since the technical details for general initial conditions are quite complex, | shall in general
limit myself to the initial conditions (1.3).

The Smoluchowski equations (1.3) are an infinite set of coupled nonlinear ordinary
differential equations (ODEs). Few cases, corresponding to specific kdtrigls) have
been solved exactly; there is, however, a well developed, albeit non-rigorous, scaling theory
that deals with a fairly general class of models (see below). In a previous paper [1], the exact
solution for a new reaction kernel, namely

Kk,)=2—qg"—¢g' =2—et*—e? (1.4a)
was developed, whekgis a real number, & ¢ < 1, and
g=e? (1.40)

whereg andb will be used interchangeably in the following. In this paper, | shall pursue two
goals. First, | wish to show how the well understood scaling theory applies to this model, for
large times and large aggregate sizes. Secondly, | show how, ivisetiose to zero, a large
range of times develops, for which the dynamics of (1.2) is described by that of the linear sum
kernelK (k,1) = b(k +1).

This paper is organized as follows. In section 2, some of the well known facts about
the Smoluchowski equations (1.2) for general kernels are reviewed. In particular, the scaling
theoryis described, which generally gives a satisfactory qualitative description of the behaviour
of the solution of (1.2) for large times and large aggregate sizes. | discuss in particular detail
the applicability of scaling theory for aggregates of fixed size at large times, since it is shown
later that our model shows unexpected behaviour in this respect. In section 3, the solution
found in [1] is displayed for the sake of easier reference. In section 4, it is shown that a
rigorous statement of the scaling hypothesis holds in our model. In section 5, | discuss how
this can be reconciled with apparently anomalous behaviour fat;(ingat fixed j and large
t. In section 6 the crossover behaviour in the limiting case in whitdnds to zero is studied.

In sectio 7 | present conclusions and open problems.

2. Scaling

In this section | give a brief overview of standard scaling theory. This sets out to describe the
large-time behaviour of the functiors(r), in particular for large values of. First, let us
make some obvious qualitative remarks:

e The Smoluchowski equations (1.2) have no equilibrium (time-independent) solutions.
This follows physically from the absence of a backward reaction in (1.1) and (1.2). Thus
the range of concentrations which contribute significantly to the total mass increases as
reaction (1.2) proceeds, while the concentratipt) of each specific species of mags
decreases eventually towards zero,

tll)ngo[cj(t)] =0. (2.1)

e The total mass of the aggregates is conserved,

e =>jc;0=1 (2.2)
j=1 j=1
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where the last equality can always be attained by an appropriate rescaling«frthe
together with a corresponding time rescaling.

The validity of this conservation law is proven by summing (1.2) gvEom 1 to infinity and
noticing that, since all the terms inside the brackets cancel out, the right-hand side vanishes.
It should be pointed out that this conclusion is invalidated by convergence problents)if
decays too slowly iry. In this case, there occurs a systemd#creasén the total mass of the
aggregates. This decrease is physically interpreted as the formation of an infinite aggregate
containing a finite portion of the mass and which is not accounted for in the sum (2.2) [3, 4].
This phenomenon is known gglation | shall not, however, be dealing with it here.

Since, at larger times, the range of masses which contribute significantly to the total mass
increases, it is appropriate to study the regime in whieindr are both large, ang maintains
a given proportiorr with respect to a so-called ‘typical size(r) which goes to infinity as
t — oo. Itis then natural to make the following ansatz:

cj(t) ~ j2P[j/s(1)] (2.3)

where the functionrb (x) is a ‘scaling function’ which vanishes quickly (indeed exponentially
[5]) asx — oo. This is known as thecaling ansatfor Smoluchowski’s equations and it
was studied in detail in [5, 6] among others. The prefagtdris motivated by the property
(2.2) of mass conservation, as we shall see below. Note that | do not specify in (2.3) how the
approximate equality is to be interpreted. | shall return to this issue later.

The initial observation, borne out by experimental work, simulations and exact results,
is the existence of a certain number of exponents [7] describing the behaviour of the
concentrations; (¢) for large times. Let us first define them. For arbitraryhe moments
M, (t) behave as follows:

[e¢]

M,(t) =Y joc;(t) = Apt™[1+0(1)] (t — ). (2.9)

j=1
Note that mass conservation fix@sto be zero. Furthermore, fgrfixed,

cj(t) = Bt "/[1+0(1)] (t = o0) (2.5)
whereas forj large at large fixed times

cj=C@)j " [1+oD)]. (2.6)

This last statement holds over the range of those valugsutifich are large compared to one
but small compared to the siz&) of the typical aggregate attimel « j < s(¢). If tislarge
enough, this range of can be made arbitrarily large, sing&) diverges as — oo, so that
the exponent is indeed usually well defined, though we will see instances in the following,
in which many different behaviours can be observed in the range 1 « s(¢). In these
cases, the definition (2.6) becomes ambiguous or inappropriate. Indeed, one might say that
the existence of a well defined exponens yet another of these regularities which have been
consistently observed experimentally, numerically and in exactly solved models.

Between these exponents, there exist the following relations, generally called ‘scaling
laws’ because they can be justified, to some extent, on the basis of the scaling ansatz (2.3), as
will appear more clearly below. First, for gl

Wj =w (2.7a)
w=(2-1)4 (2.70)



7722 F Leyvraz

wherew denotes the common value of all exponents Furthermore,
8, =(p—1)8 if p>7t-1 (2.89)
8, = —w. if p<t-1 (2.80)
Note that relation (28 is consistent with mass conservation (thatis= 0), whereas (218
is incompatible with it, unlessy = 0, which cannot hold in any model in which the typical

size grows without limit, so that each individual concentration tends to zerc-aso, see
(2.5) and (2.d@). Thus one concludes that

<2 (2.9)

so that forp = 1, equation (2.8) holds, rather than (2.

The above relations hold in many cases, both empirical (namely related to experiments)
and numerical (based on the numerical solution of specific models), as well as in some solved
models [5, 6], though counterexamples are also known [8]. Thus, for the constant kernel,

Kk, 1) =2 (2.10)
one finds for the monodisperse initial condition (1.3)
()= — 2 20/t + DI[L+O(j/1%)] (2.11)
“W=in\iv1 =] i/ il :

for t — oo, where
d(x) = x%e". (2.12)

For arbitrary initial conditions with all moments finite, it is not possible to make such a sharp
statement, and one has instead (see appendix A),

cj(t) = j2(j/nexp(—j/DIL + O(j/1) + p;] (2.139)
whent becomes large, where
p;j = O(a’) (a<1 (2.1%)

for j — oo under an additional technical assumption stated precisely in appendix A to prevent
such initial conditions as;(0) = §;2/2, which lead tacp;+1(t) = 0 for all + and all j, in
contradiction to (2.18) and (2.1®). From these results or otherwise, it is easy to obtain

M, (1) = T(p + Dr* 1 + o(1)] (p > —1). (2.14)
From this follows

§,=p—1 (p > —1). (2.15)
From (2.12) and (2.13) one then obtains

7 =0. (2.16)
On the other hand, from (2.13) again, one finds

w;=w=2 (2.17)

for all j. In this example, one therefore sees that all scaling laws are satisfied and the
approximate equality (2.3) is satisfied in the strict form (2.13).
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The scaling theory of aggregation, which is used to justify the above findings, starts from
the following rigorous observations: consider a ketkiér, o’) of homogeneity degree that
is, such that

K (ao,ac’) = a*K (0, 0") (2.18)

for arbitrary real positive values af > 0. Further consider the continuous equations

c(o,t) = %/ da// do”" K(o',0")c(o’,t) c(c”, 1)
0 0

x[8(c" +0" —0)—8(c' —0) —8(c" — 0)] (2.19)
which reduce to (1.2) if the initial condition is given by

c(0.0) =Y cr(0)8(c — k). (2.20)
k=1

One now observes that (2.19) is invariant under the action of the following one-parameter
group of transformations:

(S,0)(o, 1) = y2c(o/y. t/y*™) (2.21)
with y > 0 a positive real number. Note that this action conserves the total mass

foo oc(o,t)do (2.22)
0

as well, if the latter is finite. One now looks for solutions that are invariant under the action of
S, . Itis clear that such are given by

c(o, 1) = 0 2®[o/[(1 — MY ] (2.23)

where® (x) is an arbitrary function and the time scale has been set in such a way as to simplify
the integral equation below, see (2.24). Putting this ansatz into (2.19), one obtains after some
non-trivial manipulations [5]

“d *d
<I>(x)=/ _y/ SK(3,2) () D). (2.24)
0 Y Jx—y X%

If this equation has solutions, then it is seen [5] that these lead to a scaling solution of (2.19). |
am not aware of any rigorous results on the existence and uniqueness theory of this equation,
but a considerable body of work exists, which examines the behavio@(of under the
hypothesis that it exists [5, 9].

To arrive at precise statements, one requires the knowledge of another exponent, namely
wu, which is defined by

lim KS 9 _c=o (2.25)
In this case, it has been shown that, foeQu andA < 1 the function® (x) behaves as

®(x) = Cx " [1+0(D)] (x = 0) (2.26)
where

=1+ (2.27)

For u = 0 no general results are available, whereag/fat 0 the functiond (x) approaches
zero faster than any power as— 0.
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So far, the theory described could presumably be made rigorous. However, the description
of one single solution of (2.19) is not of much use. The power of scaling theory arises from a
number of other assumptions, the status of which is far more difficult to assess.

First, it is assumed that any rapidly decaying initial condition of the system (2.19), say
with all moments finite, will, for large times, evolve into a scaling solution, at least for large
values ofo . Itis unclear how to prove this, or even under what assumptions it is true. Equally,
it is not obvious in which form convergence should take place. For simple systems, such as
the constant kernel, we have seen that (see (2.13)) the difference between the scaling form
and the exact solution can be bounded quite explicitly, in a way that allows control of this
difference, even wher is fixed instead of being large. For more general systems, however,
no such estimates are known.

Furthermore, scaling theory states that the scaling function only depends on such coarse
features as. andu, when these are taken to refer only to some asymptotic behaviour of the
kernelK (o, o’) for large values of ando’. For scaling theory to be of any practical use such
statements are very important, since no realistic kernelis exactly homogeneous. However, such
claims have received no confirmation from exact solutions and at best little from numerical
work. In this respect, our kernel lends itself to analysis and | shall show in section 4 that the
following sharp form of convergence towards a scaling form can be proved: one defings
from an assumed given positive, increasing function ofr), which we shall call the ‘typical
size’ of the aggregates, through the implicit equation

J/slti(x0)] = x. (2.28)

The meaning of the timg (x) is the following: letx be an arbitrary number (of the order of
one). Then, at some timej will be equal taxs(¢), that is, the sizg under consideration will
be precisely a fraction of the typical size. The timg (x) is therefore precisely this time as
a function ofj andx. From this it follows that (2.3) can be rewritten as

jlijqoo{jzcj[t, )]} = @ (). (2.29)
This is exactly the result | shall prove in the next section concerning the kernel (1.4). It will
be seen that for this kernel one can choose

s(t) =t (2.30)

and the scaling functio® (x) on the right-hand side of (2.30) turns out to be exactly the same
as for the constant kernel, thus partially vindicating the usual claims of universality.

We now proceed to discuss the way in which the scaling assumption can be used to explain,
at least partially, the results stated at the beginning of this section. Define, again following
current usage, the exponenas follows:

s(t) = Dt*[1 +o(1)] (t — 00). (2.32)

From the above remarks, it follows that
1
= — 2.32
i=1 (2.32)

Note first that if the convergence to the scaling solution is so strong ttratfor finite values
of j is well described by ~2®[j/s(7)], then it follows that

T=r1. (2.33)
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Under this hypothesis, let us now evaluag(r) as follows (again via (2.3):

M) = ) jP72@Lj/s(1)]
j=1

J
oo . p—2 00
=s(t)”_zz<s(]—t)> ®[j/s()] %s(;)/’—lfo xP~2 (x) dx (2.34)
=1

provided the final integral is convergentat= 0, convergence at infinity being guaranteed by
the fact [4, 9] thatb (x) is exponentially decaying as— oo. This corresponds, using (2.33),
to the inequality

p>1t—1 (2.35)
consistently with (2.8). Moreover, (2.34), via (2.31) and (2.4), entails

8p=1(p— Dz (2.36)
and hence in particular

8o =2 (2.37)

so thatz andé, can be identified.

Clearly, the above derivations lack rigour. However, confidence in their validity is wide-
spread, being upheld by the observation that both the amplitude and the exponents in the
leading large-time behaviour of the moments are given correctly by (2.34) in both exactly
solved models with constant and linear sum kernels.

It is, however, easy to exhibit a simple counterexample to the above treatment. Let us
consider the following expression for the concentrations:

b0
c,(f):f2<t+Ll) + (2.38)

This distribution does not correspond to any known specific model, though it is inspired from
an exact solution (see [8]). It satisfies the scaling ansatz (2.3) with

sty =t d(x) = x%e* (2.39)

as is rigorously established using (2.29). On the other hand, it is clear from (2.6), (2.31) and
(2.5) that in this case

=0 z=1 (2.40)
but
w=1 (2.41)

Hence (2.1) is inconsistent with (2.40) and (2.41). Moreover, it is easily seen that (2.38) via
(2.4) yields

s, =-1 (-1<p<0 (2.42)

in violation of the ‘scaling law’ (2.B8). Again, at fixedj and for large times, the range
1 « j « t has asubrange & j <« Int, in which ¢;(¢) decays exponentially i, in
contradistinction to the constant behaviour predicted from the factthat0. Thus we have
an instance in which the definition efgiven in (2.6) is inappropriate.
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To understand what is going wrong, we look in more detail at this example. The problem
occurs on substituting the first terms in the sum in (2.34) by the scaling expression. It is
generally not allowed to substitute, say(t) by ®[1/s(¢)]. The error committed when this
is done cannot be controlled, as the above example shows. It is not, of course, necessary that
the neglected term fall off exponentially iy but it is remarkable that even such a rapidly
vanishing term (ag — o0) is sufficient to cause the scaling laws to fail.

Itis thus seen that the scaling ansatz may motivate or suggest the scaling laws, but cannot
prove them. A separate issue is whether the scaling assumption holds at all for large times
and largej. In the artificial model shown above it clearly does. In our model, | shall show
in section 4 that scaling in the sense of (2.29) with (2.28) does hold, whereas we shall see in
section 5 that the ‘scaling laws’ do not.

In conclusion, therefore, let us emphasize that, contrary to a widespread belief, the
so-called ‘scaling laws’ do not follow from the scaling ansatz, at least not when scaling is
interpreted in its usual sense, see above, and the exponents are also defined as above. This
is an important issue, since data analysis both in experimental and numerical work generally
proceeds along the lines sketched at the beginning of this section.

3. Summary of the solution

In this section | display the solution, described in [1], of the evolution equations (1.2) with
the initial conditions (1.3). This section is merely for ease of reference: no derivations of
the formulae presented are included and for these the interested reader is referred to [1]. The
following well known transformation [3] is performed. Define

cij(t)y  ¢;(®)

(0) = == = 3.1a
PO =T e Mo (3.12)
together with the change of time variable froro 6 according to the definition
do = dt ) " ci(r) = dt Mo(r). (3.1b)
k=1

This change of variable can be explicitly inverted, as shown in [1], but we shall not need this
in the following.
One then finds the following recursion, which in principle yields exact expressions for

$;(6),
) j—1 6 o
¢;(0) = exp[~(1— ¢’)6] Z[(l ) /0 do’ g (6) ¢ 1 (6') €471 } (3.2)
k=1

However, these expressions quickly become unwieldy and do not yield an understanding of
the solution.
One now defines the following generating function:

HZ.0)=>) ¢;0)e -1 (3.3)
j=1
The solution, as given in [1], consists of an explicit expressiorf¢r, 0). Before we go any
further, however, note that (3.3) entails foa non-zero positive integer the formula
80 =L (e 2 1.0y
] ac &

(3.40)

{=—00

thus allowing the evaluation of all;(r) onceH (¢, 9) is known.
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To present the solution, we need the definition ofghexponentialt,

o) =]]a-¢'n7" (3.59)
=0
o0 X"
= 3.5
) ;(q;q)r (3.50)

where(a; q), is theg-factorial

n—1
(@ q)n = [ J(1 - agh. (3.6)
=0

The equivalence of the two expressionsdp(x), (3.5a) and (3.B), is a well known identity
[10]. Itis then found that [1]

Z q "¢ expfg")

H(,0) = (3.7a)
(a5 9)r
8 = qirt r -
H.0) = _£|n{; A lexpog) - 1+ e, )} (3.10)
H(,0) = _@ In[1+S(¢,0)] (3.7¢)
1 X g7t
S, 0 0q") —1 3.d
€0 = = {)g(q o [expegh) — 11 (3.7d)
Let us now, for notational convenience, introduce the quafftity):
T(q) = Lo @ =1/e4(q) (3.8)
q bag“eq q ;:o_ /eq(q). .

Note that this definition entails th&t(0) = 1 and 1< T'(¢) < oo for0 < g < 1. To obtain a
full solution, the connection betwe@rand the time is required. This is given by (see [1])

0 < exp(0g’) — 1
t=T(q )Z exrz(qqq;r - T(q)[expe _1 +Z; %} (3.9)

where the integration constant has been chosen sé thad for ¢ = 0.
For the zeroth momeniZy(¢), one obtains exactly

0
Mo(t) = Zcm) - [T(q)z 1 (eXp;)q )} . (3.10)

This formula, together with (3.9), provides an exact, if implicit, expressionfg(). For

larged, (3.9) yieldst = T'(¢) €’ [1 +0(1)]. Note that these results imply thagoes to infinity

whenr does. Thus the above manipulations are indeed consistent. Hence, at large times (3.10)
yields

Mo(t) =) c(t) =t [1 +0o(D)]. (3.11)

k=1

T see, for example, the chapter on thbinomial theorem in [10].
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Concerning the large-time behaviour @f(¢) at fixed j, it is shown in [1] that at large
times,

_ /T *
C T@(g: )
As pointed out before, the moments can be computed explicitly from a knowledge of

H(t,0). In particular, the expression faf,(¢) is found to be, in mixed but useful notation,
see (3.9),

cj(®) [1+0o(D)]. (3.12)

Srearq"€/(q; ),

2
Mo(t) =2t + Q(q) +

. 3.13%
> 20d €/ (q5 @)y (313)
= !
o) =1-2) 1. (3.13)
=1 q
One therefore finds for large times, via (3.11),
Ma(1) = [2 + Q(@][L + O(~2*)] = 2t + Q(g) + O ™). (3.14)

Itis further shown in [1] that a similar behaviour holds for alht large times, namely,
M, (1) = nl " H1+1(n — 1) Q(g)r + 0@ #*)]. (3.15)

Note finally that an expression similar to (3.13) can also be derived for the inverse of the zeroth
moment, namely

expdq’) — 1

3.16
(q;9)r—1 ( )

Mo) t=1+1-T(q) )
r=1

4. The solution in the scaling limit

To compute the scaling limit means to see how the functiofis) behave in the limit

(2.29). Various results already obtained (such as the fact that the second moment behaves
asymptotically as, see (3.14), as well as the generalization to arbitrary moments, see (3.15))
suggest that the typical siz¢) grow ast. We therefore define according to (2.28)

t;(x) = j/x. 4.1)

The scaling limit (2.29) then translates, using é3.4nd (3.11) into the following statement
for ¢;(t) (note that | deviate here from my convention of showi#}@6) as a function ob.

This is because the quotiefts is important and does not translate into a simple expression
in terms off)

Jim [j¢; (/)] = lim [je;(j/0)/MoGi/x)] = @x)/x (4.2)

where the large-time expression fiflp(r) given by (3.11) has been used. In the following, |
will show that this formula holds, with the functioh(x) appropriate to the constant kernel
case, see (2.13).

To show this | use the following expression #y(0).

i/b )
60 = o f H(.6) e d 4.3)

wi/b
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as entailed by (3.3). This is Cauchy’s integral formula applied to an exponential series, or it
can be viewed as a Fourier integral, sif€é;, 0) is periodic in¢ with period 2ri/b. | shall
use the following strategy. First, | show that the integrand has only one singulatitpéar
the imaginary axis on the striRe¢| < n«/b. This will allow one to move the contour to the
right. One then picks up the contribution from the singularity, which yields the desired result,
and shows that the shifted integral goes to zero in the limit (4.2).

| shall often use the general identity

1 qugf(qr) Ry AC)
r=0

=S o 4.4
e (@) = (@ 9)r ,,; w49 (4.4)

valid for an arbitrary functionf (z) analytic inside a circle with centre = 0 and radius
larger than one. This is shown in appendix B. From it one obtains, in particular, the following
expression fo§(¢, 6):

00

QWI
S0 =3 —@ " P (4.5)

m=1

This shows thafS(¢z, 0) is analytic throughout the whole-plane, since the sum in (4.5) is
convergent for al;. To identify the singularities irg of H(¢, 6) one therefore need only
consider the location of the zeros of

R(,0)=1+5(,0) (4.6)

under the hypothesis thatis large, since this asymptotic behaviour is the one of interest.

In appendix C, | show thaR(¢, 6) has only one set of zeros,(¢) + ikx /b for all integer
values ofk, which approaches the imaginary axisas co. Since the integral in (4.3) only
involves the striglm ¢| < m /b, only the (real) value, (¢) is relevant. In appendix C, | show
that this zero satisfies the inequality

12,(t) — (bt) Y = O ?Iny). 4.7

Furthermore, as stated above(t) is theonly zero with this property, that is, there exists a
(time-independent) constait such that there are no zeros beyond the ones just mentioned
in the strip 0< Re¢ < K. This allows one to move the path of integration in the exact
expression (4.3) ap; () to the right byK . One therefore has, from (4.3)

) b K+mi/b )
¢;j(0) = —b Res H(¢,0)e " + — H(¢, 0) et de
¢=¢(1) 2]'[| K*in/b
= b Res H(z,0) €™/ + Olexp—bK )] .8)
=g

for j large. We shall see below that the residue gives the correct result in the scaling limit, so
we would like to show that the remaining integral term disappears in this limit. From (4.8)
it follows that the integral decays exponentially jrat fixed time One therefore needs to
estimate the growth aff (¢, ) uniformly on the interval of integration in (4.8) as a function
of 7, in order to show that the integral term indeed goes to zero whenoo andj = xt.

To this end, note first that, for largeusing (3.d)

Sz, 0) = e + 0[], (4.9)

1
eq(g™%)
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From this it follows that for sufficiently large, the value &(¢, ) is uniformly bounded away
from —1inthe strip 0< Re¢ < K, so that the denominator 15¢¢, 6) in the expression (3¢f
for H(¢, 0) is of the order of one. Since one has, from ¢3.7

35(z,0)/30

H(z,0) = 1+50.0) (4.10)

it only remains to estimate the numerator from above. One has
9S8(¢£, 0) 1 o g ¢
00 | " leg(aTO S (g a)
< Ki(0)¥ (4.11)

where the constari,(¢) is independent of. From this it follows that the numerator of (4.10)
grows at most linearly im, whereas an exponential decayjitis implied by (4.8). From this
it follows that in the scaling limit the integral can indeed be neglected.

It now remains to show that the contribution due to the singularity yields the expected
scaling behaviour

3S(¢,0)/80

—b Res H(z,0)e Pt = —pe 60 ) (4.12)
¢=60) 3S(£.0)/0% | —¢ 1
Using (3.8) one finds
%i’e) =bT(q) & +0O(¢) + O[c2 exp(gh)]. (4.13)

Since one evaluates (4.13) @gtr) for larget, the two last terms on the right are negligible.
Similarly,

95(¢.6)

YR —bT(q)¢ & +O(¢ &) (4.14)
so that one finally obtains
—b {R{e(s) H(z,0) &% = bt (1) exp[-bj L (D][1 + 0o(D)] = %efj/’[l +0(1)] (4.15)
= (t

in the limit of large times. From these considerations, together with the estimates (4.11) and
(4.9) on the remainder term, one finds that our model scales in the same way as the constant
kernel case.

5. Validity of the scaling laws

As was pointed out already in section 2, the existence of the scaling limit isquivalent to
the various scaling laws which are usually assumed to follow from it. As was discussed in
detail in section 2, the scaling limit concerns the simultaneous limit of large aggregate sizes
and large times, when the ratjgs () is kept fixed, where(¢) denotes some suitable measure
of typical size. On the other hand, many exponents which are commonly used in the analysis
of numerical and experimental data refer, at least in part, to the behaviou@ pht fixed j
for large times, or at fixed « s(¢) ast becomes large. Here | contrast the two behaviours in
the case of our model defined in (1.4), since it shows the issues involved quite nicely.

In the previous section, | have shown that the scaling limit exists, that is, that

lim j2c;(j/x) = x%™. (5.1)
Jj—> 00
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From this it follows, in the notation of section 2, that

' =0. (5.2)
However, at fixedi for larget, one finds from (3.12)

w;=2—gq’. (5.3)

Thus, the very first law concerning the exponent is violated, since the differem} are
distinct. On the other hand, as follows from (5.1), the exponéstequal to unity. Thus, we
are led to suppose, according to (2.7) and (2.37), that

T =0. (5.4)

However, again, we see that a different result follows from the exact result (3.12). Indeed, for
larget,

T(q) explg’ In(t/ T (¢)]
(1) = 5.5
G0 =" (q:9)j-1 59)

where thej-independent prefactor has been separated fronj-thependent part. Note now
that over the range

1« j<btinnt/T(q)] (5.6)

c¢;j(t) depend strongly ory, decaying faster than any power, in stark contradiction to the
predictiont = 0. In fact, one sees here precisely an instance in which there exist two
infinitely broad ranges of inside the range Xk j « s(t) = t, for which the behaviour of
¢ (1) as a function ofj is quite different.

Similarly, the exponent8, for the moments will not, in general be correctly given by the
scaling law (2.8). Indeed, from (2.36) one obtains for our kernebj1.4

sp=p—1 (02 -1

8: = -2 (p < -D). &
However, manifestly

M, (1) > c1(t) = O(t~2*) (5.8)
implying that for allp,

8p = —2+¢q (5.9)

sothat (5.7) cannothold #1 < p < —1+¢. Summarizing, we find that the small aggregates
definitely do not behave as suggested by the scaling limit. Thatis, thglisitoo, 7 — coata

fixed value ofx = j/s(¢) cannot be interchanged with the limit— 0. A similar phenomenon

occurs [8] in the context of a model, in which the reaction &té, /) is allowed to depend on

the parity ofk and/. However, this case could reasonably be considered as somewhat artificial.
On the other hand, the model described here is a reasonable one: it merely describes the effect
of having small aggregates being slightly less reactive than others. Under these circumstances,
current opinion concerning the large-time behaviour of small aggregates and its relation to true
scaling exponents should presumably be reviewed.
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6. Theb — 0 limit

In this section, | analyse the dependence of the various quantities of interest on the parameter
g in the singular limitg — 1. To this end it is clearly undesirable to have any ‘hidden’
dependence. For this reason one redefines the generating function, see (3.3),

H(5.0)= H®.0) = HE/Ing™.0) =) ¢;0)e 1. (6.1)
j=1

With this definition, the distance of the singularitiesdnof H (¢, 6) from the imaginary
axis provide information on the behaviour ¢f(0) as a function ofj, with no g-dependent
prefactors.

Let us first quote a few results on the linear sum kernel,

Kk, 1) =bk+1) (6.2)

which will be helpful in understanding the behaviour of our model. If one performs the various
substitutions sketched in section 3 on the linear sum kernel (see [1] for greater details), one
obtains the following: for the relation betweemand6, using the elementary relation for the
moments in the kernel (6.2),

to(t) = —bpo()pua(t) = —bpo(t) (6.3)

where one defines

() =Y j P (@) (6.4)
j=1

andc® (1) is the solution of (1.2) with the initial condition (1.3) for the kernel (6.2). From
(6.3) and (3.b) it follows that

b =1—e? (6.58)
yielding
do
dr = T (6.50)

Note that in this case, in contrast to the case of our kernel @ ggturates to b asr — oc.
Thus, the scaling limit should be viewed as the lit#it— 1. For the linear sum kernel, there
is no physically meaningful solution beyond equal to unity, though the functior¢z§°)(9)
do possess an analytic continuation valid foréallA well known result shows that they are
given by [11]

¢;0)(9) =aq, (b@)j_le_hj9 (6.6)
where thez; are the following combinatorial coefficients [11]:
j.f—z ei 32 1

In our model, as we shall see, matters are a bit more subtle,8ireeo asr — oo, NO
matter what the value af. Nevertheless, the time interval such that

11— b0 < 1 6.8)
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is significant, since it is the region over which intermediate scaling behaviour is expected.
Indeed, from (6.5), one sees that if our model were exactly the sum kernel, the range defined
by (6.8) would simply cover all large times.

Let us then analyse the behaviour of the exact relation (3.9) connectindé for 6
large with respect to one but not with respectio- )1, see (3.9). In this time range the
approximate relation = T (¢) € given in section 3 cannot be used. Let us now set

e=1—(1—¢q)h. (6.9)

Note that small positive correspond to the limit of large but intermediate times, for which
our model, see (1.4), is expected to behave similarly to the linear sum model characterized by
(6.2). In appendix D it is shown that

dr -1 1 2\ 13, 2
i Mo(t) = m{1+0[(b/e ) In?/b)]}. (6.10)

Therefore, itis seen that (d6 and hence the zeroth moment are close to the expression for the
linear sum kernel as long a3 > b. As is further shown in appendix D, one has the following
approximate expression fo(9):

1

t(9)=1_q

In[1 — (1 — ¢)0] *[1 + O(be ***)] (6.11a)

for arbitrary A > 0. Thus it is seen that the relation betweeandd is again close to the one
that exists for the linear sum case, as long4as> b or equivalently

Inp~—1
2b

which can clearly only be satisfiedlif« 1. Note that this result might have been expected on
intuitive grounds: indeed, for the sum kerhét+1), the typical size (1) goes as®’, as is seen,

for example, from the behaviour pk(z), see (6.4). Thus, for times at which (6.11) is violated,

the typical size in the sum kernel is larger titen}, so that the correspondence between the sum
kernel (6.2) and ours is lost. On the other hand, the scaling behaviour described in section 4
is recovered as soon as

1-g0o>1 (6.12)

since this is the necessary condition to neglect the summands within (3.9). Equivalently,
this gives the requirementthat> exp(1/b). Thereis clearly avery large range of intermediate
times Inb=1/(2b) « t <« exp(1/b). For these, however, | do not know whether a simple
description is possible at all. Further work is needed to analyse this transition range.

So far, | have only discussed the relation betweandd in our model in the time range
(6.11) and in the linear sum kernel case. Now | discuss the relation betwegn(then our
model and the corresponding functions for the linear sum kernel. The first and most obvious
remark refers to the recursive nature of equations (3.2). From (3.2) it follows that for any
fixed j

1< be? « 1 (6.11b)

$;(0) = ¢\” O)[1+00%0)]. (6.13)

Thisis a peculiar result: the true linear sum kernel has no physical solution begead.. On

the other hand, the closeness between the solution of our kernel and the analytical continuation
of the solution for the linear sum kernel persists well beyond this limit, as long as we restrict
our attention tdixed j only. It should be pointed out that the constant implied by the error
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term Q(b%0) is non-uniform inj, that is, for large values of, the prefactor in this error term
may well become large.

On the other hand, it is immediately clear that (6.13) cannot hold fof ab soon as
bo is larger than unity, since in that case @li(¢) would be monotonically decreasing, in
contradiction to the normalization condition”, ¢; = 1 implied by the definition of;

(3.18). Thus, as soon & passes unityp; () must deviate fronqu(.o)(be) significantly for
sufficiently largej, though for any fixed value of, the two functions remain close up &6

of the order of ¥b. Note further that this result has only minor implications for the functions
c; (1), since these are connected to ¢hev) by the change of variables (2)lwhich destroys
the connection implied by (6.13), since it involvéf(¢), which in turn involves arbitrary
values ofj.

A remark concerning the opposite extreme is also easy to derive: namely, for any value
of ¢, no matter how small, there are valuesjafo large that the qualitative behaviour of the
linear sum kernel (6.2) differs from that predicted for ours. This can be seen as follows. For
j — oo at fixed time, the asymptotic behaviour of the linear sum kernel is such that there is
ana(t) > 1 so that, for all times

lim j%2c;(t)a(t)’ (6.14)
J]—> 00

exists and is a finite positive number. On the other hand, in our kernel, it is apparent from
(3.7c) and (3.d) that the generating function is the quotient of two entire functions. Thus the
singularities in the complex plane can only be poles. Using (4.5), one convinces oneself that,
for smallg, 1 +S(¢, 6) can only have a simple zero, whereas for large times this follows from
the analysis in section 4. Whether multiple zeros are possible at all is doubtful. From this
follows, using standard Tauberian theorems [12], that there dgan> 1 so that

lim c;(t)a(t)’ (6.15)
J—>00

exists and is a finite positive number. Thus the behaviour at |agj¢he two systems is quite
different. (This was to be expected on the grounds of qualitative arguments, which show that
this behaviour depends only on the asymptotic degree of homogeneity of the kernel [13].)

| now wish to estimate the range of times over which @J6) which contribute
significantly to the total mass remain closeqtﬁ)(e) for a given value ob as well as the
time range over which the various moments of our system behave similarly to those of the
linear sum kernel. It is shown in appendix E that

|M,,(6) — pa(0)] = O[b%e 2"~ 1], (6.16)
One finds, from the exact solution of the linear sum kernel, that
wn(0) = O~ @3], (6.17)

Thus, as long a$? « €, one sees from (6.16) and (6.17) that the difference between the
two moments is much less than the moments themselves. Thus our kernel is again well
approximated for all moments of fixed ordeas long a$? « €, which is the same condition
stated in (6.14) and (6.1b). Again, the above estimates are not uniformzjrso that even
for small times, it is presumably possible to find moments in which the two kernels deviate
significantly. The order of these moments would, however, go to infinityzas> 0. This
is linked with the fact, already discussed above, that the concentrations corresponding to very
large aggregates are always different for the two kernels.

If the typical size is defined by/»(z), one sees from (3.14) and the above considerations
that the typical size reached wheris of the order ob~/2 is of the order of,~* both in our



Solvable model of aggregation kinetics 7735

systems and in the linear sum kernel. Thus one sees that the analogy of behaviour between
the linear sum kernel model and our model is lost once the typical size goes beyorihis
was, of course, to be expected, since the approximate equality

K(j, k) =b(j +k)[1+O(bj, bk)] (6.18)

fails whenj or k becomes of the order &f .

7. Conclusions

To sum up, | have analysed the explicit solution of the Smoluchowski equations for the kinetics
of aggregation found in an earlier paper [1], with respect to its scaling properties. This solution
was for the case in which the reaction rates are given by

K(j,k)y=2—-¢q’ — 4~ (7.1)

This kernel has the remarkable property of interpolating, in the limit whes 1, between
two well studied kernels, namely the constant kernel and the linear sum kernel. Further, it
can be viewed as a correction to the constant kernel, thus allowing one to test whether the
predictions of scaling theory concerning the universality of behaviour for large times and large
values of;j are indeed satisfied.

The results are complicated and in a sense mixed. Thus, for example, the large-time
behaviour at fixed is very different indeed, since one has

[t/ T @)%
 T(@)(g:9)-1

in contradistinction to the constant kernel, for which at long times @) decay as~2, that

is, with the same exponents, and furthermore with the same prefactor. Here all the exponents
depend ory and the amplitude as well. However, as was shown in section 4, a rigorous scaling
result does hold for our system also, and it is identical to the corresponding one for the constant
kernel, namely

cj(t) [1+0o(D)] (7.2)

lim j2c;(j/x) = x%7. (7.3)
J—>00

However, for the constant kernel the results of (7.3) can actually be extended down to the case
wherej is fixed andt — oo. As (7.2) shows, this is not the case for our model.

Finally, I studied the limiting behaviour of the functiong) in the limitg — 1, for which
the kernel shows a transient behaviour similar to that of the linear sum kernel. Such transients
are of physical interest, since they occur, for example, when an aggregation process passes
from being dominated by molecular diffusion to being driven by sedimentation. Again the
picture is quite complex: for fixed values pfthe similarity between the solutions of our kernel
and those of the linear kernel extelmelyondthe times for which the solutions of the linear sum
kernel are physically meaningful! This must, of course, be taken to mean that our solutions
coincide with the analytic continuation of the linear sum kernel solution, even when the latter
has ceased to represent a solution of the equations. This is presumably to be interpreted as a
phenomenon akin to that of gelation: there, in some cases (Flory model of gelation [14]), the
analytical continuation of the solution remains meaningful even at times for which it fails to
keep constant mass. In the case of gelation, this is due to the presence of an infinite cluster
which takes up the remaining mass. In the case of our model, the analytical continuation of the
solution of the linear sum kernel also fails to preserve mass, but the remaining mass is simply



7736 F Leyvraz

taken up by clusters, the mass of which increases to infinity as 1. These actually make
up most of the mass, so no contradiction is involved.

On the other hand, if one wishes to know when the low-order moments are the same
for both model, one finds that this is exactly the case as long as the typical size is less than
(1 — ¢)~tin either of the two systems. However, it should be emphasized that this similarity
only holds for those; () which contribute significantly to the mass. If one goes at fixeul
arbitrarily high values of, and thus far beyond the typical size at timene will always find
great differences between the two models, no matter how snsall
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Appendix A

Here | show how the solutions of (1.2) in the constant kernel case approach the scaling limit for
arbitrary initial conditions:; (0), as long as the; (0) decay exponentially ifi and the greatest
common denominator of those valuesjdbr which¢;(z) # 0 is one. For definiteness’ sake

I will further assume that the total mass is equal to unity, that is

> jcj0 =1 (A.1)
j=1

To solve (1.2) in the case
K(k,1)=2

for arbitrary initial conditions:; (0), one introduces

oo

G.H=> ¢ -1. (A.2)

j=1

In [15] it is shown that

8(&)
G 1) = —2" A3
(93] 1—1g(2) (A.3)
where
g(&) =Y c;0 -1 (A4)
j=1

From the assumptions made of(0), it follows thatg(¢) is an analytic function on a disc of
radiusR with R > 1 and that on any circumference of radjus: R it takes a strict maximum
atp. It therefore follows thag(¢) has a zero at = 1, and further, that there exists & > 1
such that any zeros @f(¢) have an absolute value greater thin From Rouck’s theorem it
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follows that the zeros of 2 rg(¢) all lie at a distance of the order of Afrom the corresponding
zero ofg(¢). From this it follows that there is aR, > 1 such that there is only one zero of
1 —tg(¢) inside the circle of radiu®,. From (A.1) and Cauchy’s theorem one obtains

1 8() 8(%)
() = — ———-  —dr— Res ———>—— A.5
G0 = 2 /n:Rz ¢ —1g(¢)] i [1—1g()]i*t (A3)
wherego(z) is the zero of - tg(¢) closest ta; = 1. This can be evaluated as follows:

1/t = gleo®] = g Do) — 1] + Ot 2 (A.6)
from which follows, since
g =) jej(0=1 (A7)
j=1
that
fo(t) =1+t +0(™?). (A.8)

One now needs to evaluate the residue in (A.5) as well as to estimate the integral. The residue
is given by
B 8(©) I t1Q)
e=to(0) [1 = 18(D]¢7*  18/[50(D)]50(1)7*

— fz[l 14 O(fz)]*(ﬁl)

=121+ 0(j/1?)] (A.9)
for larger. As for the integral, it can be estimated as follows:
i/ g@) At | _ if g@) g0 | de
27 Jiejor, 1= 18(0) ¢7*1] © 2w Jog,|1—1g(2)  1—1g(0)| R;U*D

=0 2R, . (A.10)

From (A.10) and (A.9) the result readily follows.

Appendix B

Here we prove the identity (4.4). If(z) is holomorphic inside a circle with convergence
radius larger than unity, one has fox0g < 1,

= £ (0)
rar =1 gm0 ®.)

m=0 :
Since the convergence in (B.1) is absolute, we can insert this expression in the left-hand side
of (4.4) and interchange the order of summation obtaining thereby

1 q°f@) 1 0 g Y

eq(qf); (q: @)r _eq(qf)r; m! =2 (q;q);
1 &m0

_eq(qg) —  m!

00 m) (O
=> ! m,( % (B.2)

eg(g"")

m=0
which is just the formula we set out to prove. Note that in the second line we used the definition
of theg-exponential as a sum, see @.5and in the third line its definition as a product, see
(3.59).
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Appendix C

In the following, | will prove the various statements made in section 4 concerning the
distribution of zeros of the functio®(¢, 6) defined by (4.6). For largé, one compares
R(¢, 6) with

Ro(£,0) =1+(1—q )t (C1

Here and in the following, | shall mix the use&ndo freely, it being always understood that
the two are related through equations (3.9). Defy(e) as the zero oRy(¢, #) nearest to the
origin. Clearly,

foe) = 7 [~ 1/, C2)
Next let us introduce the following notation:

Gc.0) = 7o (€3)
from which, via (3.9) | obtain

t = G(0,0). (C.4)
Hence

[R(£.0) = Ro(2.0)| = [1—¢~°[|G(£.0) — G(0.0)]. (C.5)

Using Cauchy’s inequality, one now finds, takidgo be any real number greater thigh but
less than unity,

It <Z <1 (C.6)
that there holds the inequality

&
Z—-1C1

I now estimateG (¢, 6) from above fori¢| = Z at large times,

|G(£,6) — G(0,6)] < max|G (', 6)]. (C.7)

G(Z.0)] < Ko(Z. q) 2 (Zqz) (CE) (C:8)
where

Ko(Z,q) = ?jleXqu(q*;')r{ (C.9)
If one now introduces a numb@f such that

g <6q” <1 (C.10)
and uses the inequality

e — 1 < Kx 0<x<) (C.11)

where

K=e—1 (C.12)
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one obtains from (C.8)

M-1 —rZ 00
q r KKO(Z,q) 1
G(£,0)| < KKo(Z, g _ 1y 209 rd-2)g
1G(£. 0)| o(Z.q) ;_o: o N ,Z.:Mq

< Klq_M299 + Ko0 (C13)

sinceZ < 1. HereK; and K, are abbreviations for constants in which some prefactors have
been absorbed for simplicity of notation. From (C.10) one now obtains for farge

|G(¢,0)| =0O(tInt) (C.14)
uniformly in ¢ as long ag¢| < Z. Using (C.5), (C.7) and (C.14) one finally obtains
1—g-¢
[RE.0) = Ro(6, )] < Kot =L — OlKe?] (C15)
the last equality being valid far appropriately small, and
K3() =0O(tInt) (C.16)

for ¢ large. Now one defines the following (time-dependent) contuaroundsy(z), see
(C.2):

Ka(@) [£(1— q’g)l.

’q ‘g ;o<t>|= . Z—1] (C.17)
If I now choose
Ka4(t) = CK3(t) (C.18)
with C > 1 a positive real number larger than unity, it follows that
[Ro(5,0) = |1+ (L —q ")t
— t|q*50(f) —q¢
= Ka(1)Z2. (C.19)
From this it follows that
|R(£,0) — Ro(£,0)| < [Ro(¢,0)] (C.20)

on C;, so that by the argument principle (Roéihtheorem)R (¢, 9) has the same number of
zeros asRo(¢, 6) within C,, namely exactly one. This fact allows one to locate accurately the
zero of R(¢, ) and hence the singularity iH (¢, 6) at large times. Indeed, from (C.2) there
follows

1
So(h) = -[1+ o] (C.21)
From (C.17) there follows that, if one denotesghyr) the zero ofR (¢, 0), then for large times

Ka(t) 15501 — g~ _0
t |Z — &)

|¢,(1) = o(0)]| < (t72In1). (C.22)

Thus it follows that
1
(1) = E[l + 0t Inp)). (C.23)

It would, obviously, be interesting to know whether the logarithmic correction could be
dispensed with. The problem, however, seems to be difficult.
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Now note that the above inequalities do not requite be arbitrary small. Infact, iK4(r)
is taken to grow linearly as one finds that there is a neighbourhood of the imaginary axis,
of width of the order of one, such that no zerosrit, ) are found within it, save those of
the form¢, (¢) + 2ik /b for arbitrary integer values éf. Thus we have shown all the required
properties of the zeros a®(¢, #) and the consequences stated in section 4 concerning the
scaling behaviour of the solution follow.

Appendix D

In this appendix | show how an approximate connection betwesmd6 can be derived for
b <« 1 and moderate times To this end | use an expression faydé, which can be derived
from (3.9) using the identity (4.4),

0 m
3—; =n;%(q;q)m- (D.1)
If one now assumes thét — ¢)0 is less than unity, then the following inequalities can be used
P Y 02)
1-g¢g
which lead to
A= g)"g" " PPm! < (q: @ < (1= q)"m!. (D.3)

Substituting in (D.1), this gives

> dad & 1
1— ¢)p]"gmm+b/2 < — < 1-g)]" = —— . D.4
2 [a - g < LIA-0" =g 09
From these inequalities, it follows that f@gl — ¢)0 less than unity, d/d9 can be well
approximated by the right-hand side of (D.4). More precisely

dr 1 >
- - < 1 _ m 1 _ m(m+1)/2
0 1_(1_q)9‘ n;)[( 7)01"[1—¢q ]

M-1 o)
S e BN (I

m=0 m=M
1—q)oM
< M[l _ qM(M—l)/Z] + % (D.5)

whereM can be chosen arbitrarily.
To obtain the sharpest possible result from (D.4), let us choose, defigiggn (6.9):

27,—1
M= '”(6#_ 05)
One then obtains
@ _ 1 2\ 1302
1o (l_q)6{1+0[(b/e ) In*(e“/b)]} (D.7)

as stated in the text. Inequality (D.5) can also be integrated term by term to yield

1) =

I i . In[1- (- q)G]_l[l +O(be 2. (D.8)

Thus all the results stated in the text are shown.
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Appendix E

In this appendix, | wish to estimate the difference between the two kernels for those values
of j which contribute significantly to the mass. Specifically, | wish to estimate the difference
betweenVs,, (t) andu, (¢). Tothis end, one estimates the difference between the two generating
functions for small positive values @f, yet for values ofz which are not very close to the
singularity. This singles out those values jofvhich contribute most to all moments (since
moments correspond to derivatives of the generating functions at the origin) and hence provides
the solution to our problem.

This is done as follows. Rewriting the basic equation 1é(z, 6) derived in [1]
(equation (2.18)) in terms df (¢, 6) one finds

oH . . -
25 & =HE. O[H(,0)— HE —b,0)] (E.1)

aslong ag is less than the nearest singularity, which is on the real axis, since all the coefficients
of the Taylor series of (¢, 0) are positive. Under these circumstances, one can rewrite the
difference as follows:

H(w)
£)?(w—¢ +b)
whereC is a contour enclosing both and the origin. For the linear sum kernel, standard

manipulations using the same variable transformations as used in the beginning of section 2
lead to

A, 0) — At —b,6) = b2 e, / E2)
C2nmi (w—

9

-
—(c 6) = bis(z. 6) L2 T (; 0) (E.3)
where
Ho(z.0) = ¢ ®) €. (E.4)
j=1

One then needs to estimate the difference betw&gn, 6) andH (¢, 6). Equation (E.3) can
be solved using the method of characteristics, to yield the following implicit solution: using
an initial condition corresponding to (1.3),

Ho(c,0)=¢ —1 (E.5)
one obtains

Ho[¢ — (€6 — 1)b0, 0] =€ — 1. (E.6)
Now define

x(£.0) =¢ —bo(E —1). (E.7)

This function reaches a maximum value at
2(0) = —Inbo = € + O(e?) (E.8)
which is greater than zero as longi#s < 1, which contains the range of interest. One has

x(©) = x[2.(0), 0] = —In(bo &) = €?/2 + O(®). (E.9)



7742 F Leyvraz

Thus the functiony (¢, #) can be inverted as long as < x.(0) or equivalently: < ¢.(9).
The inverse, which is denoted lpyy, 6), is then chosen to be the branch such that

£(0,6) =0. (E.10)

From (E.6) and the above definitions it follows that
Holx(,6),0] =€ —1 (E.11)

or equivalently,
Ho(x.0) = expl (x.0)] — 1. (E.12)

One then considers the function

E(,0) = H[t — (€ —1)bo, 0] — (&5 — 1) (E.13)

as a measure of the deviation between the approximate and the true functions. Substituting in

(E.1) one finds the following equation fé(¢, 0):

OF .6y = bE( 9>@[< 0),60]+ H[x(¢,0),6]
89 C’ - C’ 8; X {, ’ X §7 k)

. - oH
x{H[x@, 00,61~ ALX(.0) ~ b.6] - b1 (C.0) e]}. (E.14)

As long as the series fdi (¢, ) converges, the last term in brackets is always negative, since
H(t, 0) is a series with positive coefficients. From this it follows that
E(,0)<0 (E.15)

as long as the series féf (¢, #) remains convergent andis real and positive. Hence, for
¢ < Z.(0) real positive, one has

H(x,0) < Ho(x,0) = expl(x,0),6] — 1= OCe). (E.16)

Therefore H (x, 6) has no singularities foy < x.(#), so that (E.16) is valid in this range. In
the following, | shall limit myself to a range @f uniformly bounded away frorg.(6), such as

0< <00 =2¢0)/2 (E.17)

From inequality (E.16), various estimates on the derivatives and the differendes of)
can be derived using Cauchy’s integral formula. Indeed,

‘aﬁ(;,e) . 1/ |H(x,0)|

0 | T 2n Je lx — X 0)12
< lexpi¢[x10), 01} — 1IO[x1(0) 1] = O(e 1) (E.18)
where
x1(0) = x[¢1(0), 8] = O(e?) (E.19)

andC is a contour chosen to lie entirely to the leftpf(9) but surroundingy (¢, 8). This is
possible as long a® < 1, which will always be assumed hereinafter.
Similarly, one obtains for the difference

dH(x,6) _ bZ/ |H(w, 0)]
ax | 27 Jelw— x2w— x +b|

H(x.0)—H(x —b,0) —b (E.20)
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whereC is a contour as in (E.18). One then estimates the right-hand side of (E.20) from above
by

b?x1(0) H[x1(9), 6]

_ 2 -3

(2m) Minyec lw — x 3 Ob%e ™. (E.21)
Thus one obtains, from (E.14)

IE(E.0) _ aH 2 2

T—bE(éﬂé’) oc [x (¢, O]+ 0% (E.22)
and hence

|E(¢.6)] = O(b%?) (E.23)

uniformly for all ¢ < ¢(x1(9), 0).
From this, one obtains the following estimate on the difference between the exact moments
of our model and the corresponding moments of the linear sum model. Let

wa®) =" j"¢(0)
j=1

_nl [ Ho(x.0)
- Z c Xn+l

_nl [expl(x.0)] -1
= / exple(x, )] — 1

whereC is a contour entirely to the left gf;(0) but surrounding the origin.
From this one obtains

P dx (E.24)

n! [ E[Z(x.6), 6]l
| M (0) — 1a(0)] < 2 e

where again the contour is to the left of x1(6) and surrounds the origin. From the above
estimates one concludes that

| M, () — pan(0)] = O[b%e 2] (E.26)
as stated in the text.

dx (E.25)
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