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Abstract. In a previous paper, a new reaction kernel for the Smoluchowski equations of
aggregation was solved exactly. This kernel,K(j, k) = 2 − qj − qk , for 0 < q < 1 a real
positive quantity, interpolates between two well understood exactly solved cases, namely that of
K(j, k) = 2 and that ofK(j, k) = j +k. This new model, however, shows a number of unexpected
features, not found in either of the two limiting cases. It is shown that this model has a remarkable
behaviour with respect to the commonly accepted scaling theory. On the one hand, it satisfies a
rigorous form of the scaling hypothesis, but, on the other hand, it clearly violates some relations
which are ordinarily assumed to follow from it. These issues are discussed, as well as the nature
of the singular limit in whichq is very close to one, for which our kernel becomes close to the
sum kernel mentioned above. In particular, the form of the crossover between two kernels with
different degrees of homogeneity can be discussed here in an exact way.

1. Introduction

In this paper I study a model for the kinetics of irreversible aggregation solved in a previous
paper [1]. In this process, aggregatesAj , which are characterized by their massj , react by
sticking to one another to form a larger aggregate:

Aj +Ak −→
K(j,k)

Aj+k. (1.1)

The non-negative quantitiesK(j, k) = K(k, j) are the mass-dependent rates at which the
aggregates stick to each other. Using the law of mass-action, namely the assumption that the
collision rate between two aggregates of massesj andk is given byK(j, k) cj ck, wherecj (t)
is the concentration of aggregateAj at timet , one obtains the following set of equations for
cj (t), which are known as the Smoluchowski equations [2]:

ċj = 1
2

∞∑
k,l=1

K(k, l) ckcl
[
δk+l,j − δk,j − δl,j

]
. (1.2)

The prefactor12 is conventional, to account for double counting. Here, and always below,
a superimposed dot denotes differentiation with respect to timet . These should, in general,
be solved for arbitrary non-negative initial conditionscj (0). However, it is generally found
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that the qualitative behaviour for arbitrary rapidly decaying solutions is similar to that of the
‘monodisperse’ initial condition

cj (0) = δj,1. (1.3)

Since the technical details for general initial conditions are quite complex, I shall in general
limit myself to the initial conditions (1.3).

The Smoluchowski equations (1.3) are an infinite set of coupled nonlinear ordinary
differential equations (ODEs). Few cases, corresponding to specific kernelsK(k, l) have
been solved exactly; there is, however, a well developed, albeit non-rigorous, scaling theory
that deals with a fairly general class of models (see below). In a previous paper [1], the exact
solution for a new reaction kernel, namely

K(k, l) = 2− qk − ql = 2− e−bk − e−bl (1.4a)

was developed, whereq is a real number, 0< q < 1, and

q = e−b (1.4b)

whereq andb will be used interchangeably in the following. In this paper, I shall pursue two
goals. First, I wish to show how the well understood scaling theory applies to this model, for
large times and large aggregate sizes. Secondly, I show how, whenb is close to zero, a large
range of times develops, for which the dynamics of (1.2) is described by that of the linear sum
kernelK(k, l) = b(k + l).

This paper is organized as follows. In section 2, some of the well known facts about
the Smoluchowski equations (1.2) for general kernels are reviewed. In particular, the scaling
theory is described, which generally gives a satisfactory qualitative description of the behaviour
of the solution of (1.2) for large times and large aggregate sizes. I discuss in particular detail
the applicability of scaling theory for aggregates of fixed size at large times, since it is shown
later that our model shows unexpected behaviour in this respect. In section 3, the solution
found in [1] is displayed for the sake of easier reference. In section 4, it is shown that a
rigorous statement of the scaling hypothesis holds in our model. In section 5, I discuss how
this can be reconciled with apparently anomalous behaviour for thecj (t) at fixedj and large
t . In section 6 the crossover behaviour in the limiting case in whichb tends to zero is studied.
In section 7 I present conclusions and open problems.

2. Scaling

In this section I give a brief overview of standard scaling theory. This sets out to describe the
large-time behaviour of the functionscj (t), in particular for large values ofj . First, let us
make some obvious qualitative remarks:

• The Smoluchowski equations (1.2) have no equilibrium (time-independent) solutions.
This follows physically from the absence of a backward reaction in (1.1) and (1.2). Thus
the range of concentrations which contribute significantly to the total mass increases as
reaction (1.2) proceeds, while the concentrationcj (t) of each specific species of massj
decreases eventually towards zero,

lim
t→∞[cj (t)] = 0. (2.1)

• The total mass of the aggregates is conserved,
∞∑
j=1

jcj (t) =
∞∑
j=1

jcj (0) = 1 (2.2)
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where the last equality can always be attained by an appropriate rescaling of thecj (t)

together with a corresponding time rescaling.

The validity of this conservation law is proven by summing (1.2) overj from 1 to infinity and
noticing that, since all the terms inside the brackets cancel out, the right-hand side vanishes.
It should be pointed out that this conclusion is invalidated by convergence problems ifcj (t)

decays too slowly inj . In this case, there occurs a systematicdecreasein the total mass of the
aggregates. This decrease is physically interpreted as the formation of an infinite aggregate
containing a finite portion of the mass and which is not accounted for in the sum (2.2) [3, 4].
This phenomenon is known asgelation. I shall not, however, be dealing with it here.

Since, at larger times, the range of masses which contribute significantly to the total mass
increases, it is appropriate to study the regime in whichj andt are both large, andj maintains
a given proportionx with respect to a so-called ‘typical size’s(t) which goes to infinity as
t →∞. It is then natural to make the following ansatz:

cj (t) ≈ j−28[j/s(t)] (2.3)

where the function8(x) is a ‘scaling function’ which vanishes quickly (indeed exponentially
[5]) as x → ∞. This is known as thescaling ansatzfor Smoluchowski’s equations and it
was studied in detail in [5, 6] among others. The prefactorj−2 is motivated by the property
(2.2) of mass conservation, as we shall see below. Note that I do not specify in (2.3) how the
approximate equality is to be interpreted. I shall return to this issue later.

The initial observation, borne out by experimental work, simulations and exact results,
is the existence of a certain number of exponents [7] describing the behaviour of the
concentrationscj (t) for large times. Let us first define them. For arbitraryρ the moments
Mρ(t) behave as follows:

Mρ(t) ≡
∞∑
j=1

jρcj (t) = Aρtδρ [1 + o(1)] (t →∞). (2.4)

Note that mass conservation fixesδ1 to be zero. Furthermore, forj fixed,

cj (t) = Bj t−wj [1 + o(1)] (t →∞) (2.5)

whereas forj large at large fixed times

cj = C(t)j−τ [1 + o(1)]. (2.6)

This last statement holds over the range of those values ofj which are large compared to one
but small compared to the sizes(t) of the typical aggregate at timet , 1� j � s(t). If t is large
enough, this range ofj can be made arbitrarily large, sinces(t) diverges ast → ∞, so that
the exponentτ is indeed usually well defined, though we will see instances in the following,
in which many different behaviours can be observed in the range 1� j � s(t). In these
cases, the definition (2.6) becomes ambiguous or inappropriate. Indeed, one might say that
the existence of a well defined exponentτ is yet another of these regularities which have been
consistently observed experimentally, numerically and in exactly solved models.

Between these exponents, there exist the following relations, generally called ‘scaling
laws’ because they can be justified, to some extent, on the basis of the scaling ansatz (2.3), as
will appear more clearly below. First, for allj ,

wj = w (2.7a)

w = (2− τ) δ2 (2.7b)
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wherew denotes the common value of all exponentswj . Furthermore,

δρ = (ρ − 1) δ2 if ρ > τ − 1 (2.8a)

δρ = −w. if ρ 6 τ − 1. (2.8b)

Note that relation (2.8a) is consistent with mass conservation (that is,δ1 = 0), whereas (2.8b)
is incompatible with it, unlessw = 0, which cannot hold in any model in which the typical
size grows without limit, so that each individual concentration tends to zero ast → ∞, see
(2.5) and (2.7a). Thus one concludes that

τ 6 2 (2.9)

so that forρ = 1, equation (2.8a) holds, rather than (2.8b).
The above relations hold in many cases, both empirical (namely related to experiments)

and numerical (based on the numerical solution of specific models), as well as in some solved
models [5, 6], though counterexamples are also known [8]. Thus, for the constant kernel,

K(k, l) = 2 (2.10)

one finds for the monodisperse initial condition (1.3)

cj (t) = 1

(t + 1)2

(
t

t + 1

)j−1

= j−28[j/(t + 1)][1 + O(j/t2)] (2.11)

for t →∞, where

8(x) = x2e−x. (2.12)

For arbitrary initial conditions with all moments finite, it is not possible to make such a sharp
statement, and one has instead (see appendix A),

cj (t) = j−2(j/t)2 exp(−j/t)[1 + O(j/t2) + ρj ] (2.13a)

whent becomes large, where

ρj = O(aj ) (a < 1) (2.13b)

for j →∞ under an additional technical assumption stated precisely in appendix A to prevent
such initial conditions ascj (0) = δj,2/2, which lead toc2j+1(t) = 0 for all t and allj , in
contradiction to (2.13a) and (2.13b). From these results or otherwise, it is easy to obtain

Mρ(t) = 0(ρ + 1)tρ−1[1 + o(1)] (ρ > −1). (2.14)

From this follows

δρ = ρ − 1 (ρ > −1). (2.15)

From (2.12) and (2.13) one then obtains

τ = 0. (2.16)

On the other hand, from (2.13) again, one finds

wj = w = 2 (2.17)

for all j . In this example, one therefore sees that all scaling laws are satisfied and the
approximate equality (2.3) is satisfied in the strict form (2.13).
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The scaling theory of aggregation, which is used to justify the above findings, starts from
the following rigorous observations: consider a kernelK(σ, σ ′) of homogeneity degreeλ, that
is, such that

K(aσ, aσ ′) = aλK(σ, σ ′) (2.18)

for arbitrary real positive values ofa > 0. Further consider the continuous equations

ċ(σ, t) = 1
2

∫ ∞
0

dσ ′
∫ ∞

0
dσ ′′K(σ ′, σ ′′) c(σ ′, t) c(σ ′′, t)

×[δ(σ ′ + σ ′′ − σ)− δ(σ ′ − σ)− δ(σ ′′ − σ)] (2.19)

which reduce to (1.2) if the initial condition is given by

c(σ, 0) =
∞∑
k=1

ck(0) δ(σ − k). (2.20)

One now observes that (2.19) is invariant under the action of the following one-parameter
group of transformations:

(Sγ c)(σ, t) = γ 2c(σ/γ, t/γ 1−λ) (2.21)

with γ > 0 a positive real number. Note that this action conserves the total mass∫ ∞
0
σc(σ, t)dσ (2.22)

as well, if the latter is finite. One now looks for solutions that are invariant under the action of
Sγ . It is clear that such are given by

c(σ, t) = σ−28
[
σ/[(1− λ)t ]1/(1−λ)] (2.23)

where8(x) is an arbitrary function and the time scale has been set in such a way as to simplify
the integral equation below, see (2.24). Putting this ansatz into (2.19), one obtains after some
non-trivial manipulations [5]

8(x) =
∫ x

0

dy

y

∫ ∞
x−y

dz

z2
K(y, z)8(y)8(z). (2.24)

If this equation has solutions, then it is seen [5] that these lead to a scaling solution of (2.19). I
am not aware of any rigorous results on the existence and uniqueness theory of this equation,
but a considerable body of work exists, which examines the behaviour of8(x) under the
hypothesis that it exists [5, 9].

To arrive at precise statements, one requires the knowledge of another exponent, namely
µ, which is defined by

lim
σ→0

K(1, σ )

σµ
= C > 0. (2.25)

In this case, it has been shown that, for 0< µ andλ < 1 the function8(x) behaves as

8(x) = Cx−2+τ ′ [1 + o(1)] (x → 0) (2.26)

where

τ ′ = 1 +λ. (2.27)

Forµ = 0 no general results are available, whereas forµ < 0 the function8(x) approaches
zero faster than any power asx → 0.
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So far, the theory described could presumably be made rigorous. However, the description
of one single solution of (2.19) is not of much use. The power of scaling theory arises from a
number of other assumptions, the status of which is far more difficult to assess.

First, it is assumed that any rapidly decaying initial condition of the system (2.19), say
with all moments finite, will, for large times, evolve into a scaling solution, at least for large
values ofσ . It is unclear how to prove this, or even under what assumptions it is true. Equally,
it is not obvious in which form convergence should take place. For simple systems, such as
the constant kernel, we have seen that (see (2.13)) the difference between the scaling form
and the exact solution can be bounded quite explicitly, in a way that allows control of this
difference, even whenj is fixed instead of being large. For more general systems, however,
no such estimates are known.

Furthermore, scaling theory states that the scaling function only depends on such coarse
features asλ andµ, when these are taken to refer only to some asymptotic behaviour of the
kernelK(σ, σ ′) for large values ofσ andσ ′. For scaling theory to be of any practical use such
statements are very important, since no realistic kernel is exactly homogeneous. However, such
claims have received no confirmation from exact solutions and at best little from numerical
work. In this respect, our kernel lends itself to analysis and I shall show in section 4 that the
following sharp form of convergence towards a scaling form can be proved: one definestj (x),
from an assumed given positive, increasing function oft , s(t), which we shall call the ‘typical
size’ of the aggregates, through the implicit equation

j/s[tj (x)] = x. (2.28)

The meaning of the timetj (x) is the following: letx be an arbitrary number (of the order of
one). Then, at some timet , j will be equal toxs(t), that is, the sizej under consideration will
be precisely a fractionx of the typical size. The timetj (x) is therefore precisely this time as
a function ofj andx. From this it follows that (2.3) can be rewritten as

lim
j→∞

{
j2cj [tj (x)]

} = 8(x). (2.29)

This is exactly the result I shall prove in the next section concerning the kernel (1.4). It will
be seen that for this kernel one can choose

s(t) = t (2.30)

and the scaling function8(x) on the right-hand side of (2.30) turns out to be exactly the same
as for the constant kernel, thus partially vindicating the usual claims of universality.

We now proceed to discuss the way in which the scaling assumption can be used to explain,
at least partially, the results stated at the beginning of this section. Define, again following
current usage, the exponentz as follows:

s(t) = Dtz[1 + o(1)] (t →∞). (2.31)

From the above remarks, it follows that

z = 1

1− λ. (2.32)

Note first that if the convergence to the scaling solution is so strong thatcj (t) for finite values
of j is well described byj−28[j/s(t)], then it follows that

τ = τ ′. (2.33)
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Under this hypothesis, let us now evaluateMρ(t) as follows (again via (2.3):

Mρ(t) ≈
∞∑
j=1

jρ−28[j/s(t)]

= s(t)ρ−2
∞∑
j=1

(
j

s(t)

)ρ−2

8[j/s(t)] ≈ s(t)ρ−1
∫ ∞

0
xρ−28(x) dx (2.34)

provided the final integral is convergent atx = 0, convergence at infinity being guaranteed by
the fact [4, 9] that8(x) is exponentially decaying asx →∞. This corresponds, using (2.33),
to the inequality

ρ > τ − 1 (2.35)

consistently with (2.8a). Moreover, (2.34), via (2.31) and (2.4), entails

δρ = (ρ − 1)z (2.36)

and hence in particular

δ2 = z (2.37)

so thatz andδ2 can be identified.
Clearly, the above derivations lack rigour. However, confidence in their validity is wide-

spread, being upheld by the observation that both the amplitude and the exponents in the
leading large-time behaviour of the moments are given correctly by (2.34) in both exactly
solved models with constant and linear sum kernels.

It is, however, easy to exhibit a simple counterexample to the above treatment. Let us
consider the following expression for the concentrations:

cj (t) = t−2

(
t

t + 1

)j
+

2−j

t
. (2.38)

This distribution does not correspond to any known specific model, though it is inspired from
an exact solution (see [8]). It satisfies the scaling ansatz (2.3) with

s(t) = t 8(x) = x2e−x (2.39)

as is rigorously established using (2.29). On the other hand, it is clear from (2.6), (2.31) and
(2.5) that in this case

τ ′ = 0 z = 1 (2.40)

but

w = 1. (2.41)

Hence (2.7b) is inconsistent with (2.40) and (2.41). Moreover, it is easily seen that (2.38) via
(2.4) yields

δρ = −1 (−1< ρ < 0) (2.42)

in violation of the ‘scaling law’ (2.7b). Again, at fixedj and for large times, the range
1 � j � t has a subrange 1� j � ln t , in which cj (t) decays exponentially inj , in
contradistinction to the constant behaviour predicted from the fact thatτ ′ = 0. Thus we have
an instance in which the definition ofτ given in (2.6) is inappropriate.
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To understand what is going wrong, we look in more detail at this example. The problem
occurs on substituting the first terms in the sum in (2.34) by the scaling expression. It is
generally not allowed to substitute, say,c1(t) by 8[1/s(t)]. The error committed when this
is done cannot be controlled, as the above example shows. It is not, of course, necessary that
the neglected term fall off exponentially inj , but it is remarkable that even such a rapidly
vanishing term (asj →∞) is sufficient to cause the scaling laws to fail.

It is thus seen that the scaling ansatz may motivate or suggest the scaling laws, but cannot
prove them. A separate issue is whether the scaling assumption holds at all for large times
and largej . In the artificial model shown above it clearly does. In our model, I shall show
in section 4 that scaling in the sense of (2.29) with (2.28) does hold, whereas we shall see in
section 5 that the ‘scaling laws’ do not.

In conclusion, therefore, let us emphasize that, contrary to a widespread belief, the
so-called ‘scaling laws’ do not follow from the scaling ansatz, at least not when scaling is
interpreted in its usual sense, see above, and the exponents are also defined as above. This
is an important issue, since data analysis both in experimental and numerical work generally
proceeds along the lines sketched at the beginning of this section.

3. Summary of the solution

In this section I display the solution, described in [1], of the evolution equations (1.2) with
the initial conditions (1.3). This section is merely for ease of reference: no derivations of
the formulae presented are included and for these the interested reader is referred to [1]. The
following well known transformation [3] is performed. Define

φj (θ) = cj (t)∑∞
k=1 ck(t)

= cj (t)

M0(t)
(3.1a)

together with the change of time variable fromt to θ according to the definition

dθ = dt
∞∑
k=1

ck(t) = dt M0(t). (3.1b)

This change of variable can be explicitly inverted, as shown in [1], but we shall not need this
in the following.

One then finds the following recursion, which in principle yields exact expressions for
φj (θ),

φj (θ) = exp[−(1− qj )θ ]
j−1∑
k=1

[
(1− qk)

∫ θ

0
dθ ′ φk(θ ′) φj−k(θ ′) e(1−q

j )θ ′
]
. (3.2)

However, these expressions quickly become unwieldy and do not yield an understanding of
the solution.

One now defines the following generating function:

H(ζ, θ) =
∞∑
j=1

φj (θ) ebjζ − 1. (3.3)

The solution, as given in [1], consists of an explicit expression forH(ζ, θ). Before we go any
further, however, note that (3.3) entails forj a non-zero positive integer the formula

φj (θ) = b−j

j !

(
e−bζ

∂

∂ζ

)j
H(ζ, θ)

∣∣∣∣
ζ=−∞

(3.4a)

thus allowing the evaluation of allcj (t) onceH(ζ, θ) is known.
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To present the solution, we need the definition of theq-exponential†,

eq(x) =
∞∏
l=0

(1− qlx)−1 (3.5a)

eq(x) =
∞∑
r=0

xr

(q; q)r (3.5b)

where(a; q)n is theq-factorial

(a; q)n =
n−1∏
l=0

(1− aql). (3.6)

The equivalence of the two expressions foreq(x), (3.5a) and (3.5b), is a well known identity
[10]. It is then found that [1]

H(ζ, θ) = − ∂

∂θ
ln
∞∑
r=0

q−rζ exp(θqr)

(q; q)r (3.7a)

H(ζ, θ) = − ∂

∂θ
ln

{ ∞∑
r=0

q−rζ

(q; q)r [exp(θqr)− 1] + eq(q
−ζ )
}

(3.7b)

H(ζ, θ) = − ∂

∂θ
ln[1 + S(ζ, θ)] (3.7c)

S(ζ, θ) = 1

eq(q−ζ )

∞∑
r=0

q−rζ

(q; q)r [exp(θqr)− 1]. (3.7d)

Let us now, for notational convenience, introduce the quantityT (q):

T (q) = −1

b

∂

∂ζ
eq(q

−ζ )
∣∣∣∣
ζ=0

= 1/eq(q). (3.8)

Note that this definition entails thatT (0) = 1 and 1< T (q) <∞ for 0< q < 1. To obtain a
full solution, the connection betweenθ and the timet is required. This is given by (see [1])

t = T (q)
∞∑
r=0

exp(θqr)− 1

(q; q)r = T (q)
[
expθ − 1 +

∞∑
r=1

exp(θqr)− 1

(q; q)r

]
(3.9)

where the integration constant has been chosen so thatθ = 0 for t = 0.
For the zeroth momentM0(t), one obtains exactly

M0(t) =
∞∑
k=1

ck(t) =
[
T (q)

∞∑
r=0

qr exp(θqr)

(q; q)r

]−1

. (3.10)

This formula, together with (3.9), provides an exact, if implicit, expression forM0(t). For
largeθ , (3.9) yieldst = T (q) eθ [1 + o(1)]. Note that these results imply thatθ goes to infinity
whent does. Thus the above manipulations are indeed consistent. Hence, at large times (3.10)
yields

M0(t) =
∞∑
k=1

ck(t) = t−1[1 + o(1)]. (3.11)

† see, for example, the chapter on theq-binomial theorem in [10].
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Concerning the large-time behaviour ofcj (t) at fixedj , it is shown in [1] that at large
times,

cj (t) = [t/T (q)]−(2−q
j )

T (q)(q; q)j−1
[1 + o(1)]. (3.12)

As pointed out before, the moments can be computed explicitly from a knowledge of
H(ζ, θ). In particular, the expression forM2(t) is found to be, in mixed but useful notation,
see (3.9),

M2(t) = 2t +Q(q) +
2
∑∞

r=1 rq
reθq

r

/(q; q)r∑∞
r=0 q

reθqr/(q; q)r (3.13a)

Q(q) = 1− 2
∞∑
l=1

ql

1− ql . (3.13b)

One therefore finds for large times, via (3.11),

M2(t) = [2t +Q(q)][1 + O(t−2+q)] = 2t +Q(q) + O(t−1+q). (3.14)

It is further shown in [1] that a similar behaviour holds for alln at large times, namely,

Mn(t) = n! tn−1
[
1 + 1

2(n− 1)Q(q)t−1 + O(t−2+q)
]
. (3.15)

Note finally that an expression similar to (3.13) can also be derived for the inverse of the zeroth
moment, namely

M0(t)
−1 = t + 1− T (q)

∞∑
r=1

exp(θqr)− 1

(q; q)r−1
. (3.16)

4. The solution in the scaling limit

To compute the scaling limit means to see how the functionscj (t) behave in the limit
(2.29). Various results already obtained (such as the fact that the second moment behaves
asymptotically ast , see (3.14), as well as the generalization to arbitrary moments, see (3.15))
suggest that the typical sizes(t) grow ast . We therefore define according to (2.28)

tj (x) = j/x. (4.1)

The scaling limit (2.29) then translates, using (3.1a) and (3.11) into the following statement
for φj (t) (note that I deviate here from my convention of showingφj (θ) as a function ofθ .
This is because the quotientj/t is important and does not translate into a simple expression
in terms ofθ )

lim
j→∞

[
jφj (j/x)

] = lim
j→∞

[
jcj (j/x)/M0(j/x)

] = 8(x)/x (4.2)

where the large-time expression forM0(t) given by (3.11) has been used. In the following, I
will show that this formula holds, with the function8(x) appropriate to the constant kernel
case, see (2.13).

To show this I use the following expression forφj (θ).

φj (θ) = b

2π i

∫ π i/b

−π i/b
H(ζ, θ)e−bjζ dζ (4.3)
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as entailed by (3.3). This is Cauchy’s integral formula applied to an exponential series, or it
can be viewed as a Fourier integral, sinceH(ζ, θ) is periodic inζ with period 2π i/b. I shall
use the following strategy. First, I show that the integrand has only one singularity inζ near
the imaginary axis on the strip|Reζ | < π/b. This will allow one to move the contour to the
right. One then picks up the contribution from the singularity, which yields the desired result,
and shows that the shifted integral goes to zero in the limit (4.2).

I shall often use the general identity

1

eq(qζ )

∑
r=0

qrζ f (qr)

(q; q)r =
∞∑
m=0

f (m)(0)

m!
(qζ ; q)m (4.4)

valid for an arbitrary functionf (z) analytic inside a circle with centrez = 0 and radius
larger than one. This is shown in appendix B. From it one obtains, in particular, the following
expression forS(ζ, θ):

S(ζ, θ) =
∞∑
m=1

θm

m!
(q−ζ ; q)m. (4.5)

This shows thatS(ζ, θ) is analytic throughout the wholeζ -plane, since the sum in (4.5) is
convergent for allζ . To identify the singularities inζ of H(ζ, θ) one therefore need only
consider the location of the zeros of

R(ζ, θ) = 1 +S(ζ, θ) (4.6)

under the hypothesis thatθ is large, since this asymptotic behaviour is the one of interest.
In appendix C, I show thatR(ζ, θ) has only one set of zeros,ζs(t) + ikπ/b for all integer

values ofk, which approaches the imaginary axis ast →∞. Since the integral in (4.3) only
involves the strip|Im ζ | < π/b, only the (real) valueζs(t) is relevant. In appendix C, I show
that this zero satisfies the inequality

|ζs(t)− (bt)−1| = O(t−2 ln t). (4.7)

Furthermore, as stated above,ζs(t) is theonly zero with this property, that is, there exists a
(time-independent) constantK such that there are no zeros beyond the ones just mentioned
in the strip 06 Reζ < K. This allows one to move the path of integration in the exact
expression (4.3) ofφj (θ) to the right byK. One therefore has, from (4.3)

φj (θ) = −b Res
ζ=ζs (t)

H(ζ, θ)e−bjζ +
b

2π i

∫ K+π i/b

K−π i/b
H(ζ, θ)e−bjζ dζ

= −b Res
ζ=ζs (t)

H(ζ, θ)e−bjζ + O[exp(−bKj)] (4.8)

for j large. We shall see below that the residue gives the correct result in the scaling limit, so
we would like to show that the remaining integral term disappears in this limit. From (4.8)
it follows that the integral decays exponentially inj at fixed time. One therefore needs to
estimate the growth ofH(ζ, θ) uniformly on the interval of integration in (4.8) as a function
of t , in order to show that the integral term indeed goes to zero whenj →∞ andj = xt .

To this end, note first that, for larget , using (3.7d)

S(ζ, θ) = 1

eq(q−ζ )
eθ + O[e(1−q)θ ]. (4.9)
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From this it follows that fort sufficiently large, the value ofS(ζ, θ) is uniformly bounded away
from−1 in the strip 06 Reζ < K, so that the denominator 1+S(ζ, θ) in the expression (3.7c)
for H(ζ, θ) is of the order of one. Since one has, from (3.7c):

H(ζ, θ) = ∂S(ζ, θ)/∂θ

1 +S(ζ, θ)
(4.10)

it only remains to estimate the numerator from above. One has∣∣∣∣∂S(ζ, θ)∂θ

∣∣∣∣ 6 1

|eq(q−ζ )|
∞∑
r=0

|q−r(ζ−1)|
(q; q)r eθq

r

6 K1(ζ )e
θ (4.11)

where the constantK1(ζ ) is independent ofθ . From this it follows that the numerator of (4.10)
grows at most linearly int , whereas an exponential decay inj is implied by (4.8). From this
it follows that in the scaling limit the integral can indeed be neglected.

It now remains to show that the contribution due to the singularityζs(t) yields the expected
scaling behaviour

−b Res
ζ=ζs (t)

H(ζ, θ)e−bjζ = −b e−bjζs (t)
∂S(ζ, θ)/∂θ

∂S(ζ, θ)/∂ζ

∣∣∣∣
ζ=ζs (t)

. (4.12)

Using (3.8) one finds

∂S(ζ, θ)

∂ζ
= bT (q) eθ + O(ζ ) + O[ζ 2 exp(qθ)]. (4.13)

Since one evaluates (4.13) atζs(t) for larget , the two last terms on the right are negligible.
Similarly,

∂S(ζ, θ)

∂θ
= −bT (q)ζ eθ + O(ζ eqθ ) (4.14)

so that one finally obtains

−b Res
ζ=ζs (t)

H(ζ, θ)e−bjζ = bζs(t) exp[−bjζs(t)][1 + o(1)] = 1

t
e−j/t [1 + o(1)] (4.15)

in the limit of large times. From these considerations, together with the estimates (4.11) and
(4.9) on the remainder term, one finds that our model scales in the same way as the constant
kernel case.

5. Validity of the scaling laws

As was pointed out already in section 2, the existence of the scaling limit isnot equivalent to
the various scaling laws which are usually assumed to follow from it. As was discussed in
detail in section 2, the scaling limit concerns the simultaneous limit of large aggregate sizes
and large times, when the ratioj/s(t) is kept fixed, wheres(t) denotes some suitable measure
of typical size. On the other hand, many exponents which are commonly used in the analysis
of numerical and experimental data refer, at least in part, to the behaviour ofcj (t) at fixedj
for large times, or at fixedj � s(t) ast becomes large. Here I contrast the two behaviours in
the case of our model defined in (1.4), since it shows the issues involved quite nicely.

In the previous section, I have shown that the scaling limit exists, that is, that

lim
j→∞

j2cj (j/x) = x2e−x. (5.1)
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From this it follows, in the notation of section 2, that

τ ′ = 0. (5.2)

However, at fixedj for larget , one finds from (3.12)

wj = 2− qj . (5.3)

Thus, the very first law concerning thew exponent is violated, since the differentwj are
distinct. On the other hand, as follows from (5.1), the exponentz is equal to unity. Thus, we
are led to suppose, according to (2.7) and (2.37), that

τ = 0. (5.4)

However, again, we see that a different result follows from the exact result (3.12). Indeed, for
larget ,

cj (t) = T (q)

t2

exp[qj ln(t/T (q)]

(q; q)j−1
(5.5)

where thej -independent prefactor has been separated from thej -dependent part. Note now
that over the range

1� j � b−1 ln ln[t/T (q)] (5.6)

cj (t) depend strongly onj , decaying faster than any power, in stark contradiction to the
predictionτ = 0. In fact, one sees here precisely an instance in which there exist two
infinitely broad ranges ofj inside the range 1� j � s(t) = t , for which the behaviour of
cj (t) as a function ofj is quite different.

Similarly, the exponentsδρ for the moments will not, in general be correctly given by the
scaling law (2.8). Indeed, from (2.36) one obtains for our kernel (1.4a),

δρ = ρ − 1 (ρ > −1)

δρ = −2 (ρ 6 −1).
(5.7)

However, manifestly

Mρ(t) > c1(t) = O(t−2+q) (5.8)

implying that for allρ,

δρ > −2 +q (5.9)

so that (5.7) cannot hold if−1< ρ < −1+q. Summarizing, we find that the small aggregates
definitely do not behave as suggested by the scaling limit. That is, the limitj →∞, t →∞at a
fixed value ofx = j/s(t) cannot be interchanged with the limitx → 0. A similar phenomenon
occurs [8] in the context of a model, in which the reaction rateK(k, l) is allowed to depend on
the parity ofk andl. However, this case could reasonably be considered as somewhat artificial.
On the other hand, the model described here is a reasonable one: it merely describes the effect
of having small aggregates being slightly less reactive than others. Under these circumstances,
current opinion concerning the large-time behaviour of small aggregates and its relation to true
scaling exponents should presumably be reviewed.
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6. Theb→ 0 limit

In this section, I analyse the dependence of the various quantities of interest on the parameter
q in the singular limitq → 1. To this end it is clearly undesirable to have any ‘hidden’q

dependence. For this reason one redefines the generating function, see (3.3),

H̃ (ζ, θ) = H(bζ, θ) = H(ζ/ ln q−1, θ) =
∞∑
j=1

φj (θ) ejζ − 1. (6.1)

With this definition, the distance of the singularities inζ of H̃ (ζ, θ) from the imaginary
axis provide information on the behaviour ofφj (θ) as a function ofj , with no q-dependent
prefactors.

Let us first quote a few results on the linear sum kernel,

K(k, l) = b(k + l) (6.2)

which will be helpful in understanding the behaviour of our model. If one performs the various
substitutions sketched in section 3 on the linear sum kernel (see [1] for greater details), one
obtains the following: for the relation betweent andθ , using the elementary relation for the
moments in the kernel (6.2),

µ̇0(t) = −bµ0(t)µ1(t) = −bµ0(t) (6.3)

where one defines

µn(t) =
∞∑
j=1

jnc
(0)
j (t) (6.4)

andc(0)j (t) is the solution of (1.2) with the initial condition (1.3) for the kernel (6.2). From
(6.3) and (3.1b) it follows that

bθ = 1− e−bt (6.5a)

yielding

dt = dθ

1− bθ . (6.5b)

Note that in this case, in contrast to the case of our kernel (1.4),θ saturates to 1/b ast →∞.
Thus, the scaling limit should be viewed as the limitbθ → 1. For the linear sum kernel, there
is no physically meaningful solution beyondbθ equal to unity, though the functionsφ(0)j (θ)
do possess an analytic continuation valid for allθ . A well known result shows that they are
given by [11]

φ
(0)
j (θ) = aj (bθ)j−1e−bjθ (6.6)

where theaj are the following combinatorial coefficients [11]:

aj = jj−2

(j − 1)!
= ej√

2π
j−3/2[1 + O(j−1)]. (6.7)

In our model, as we shall see, matters are a bit more subtle, sinceθ →∞ ast →∞, no
matter what the value ofq. Nevertheless, the time interval such that

|1− bθ | � 1 (6.8)
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is significant, since it is the region over which intermediate scaling behaviour is expected.
Indeed, from (6.5b), one sees that if our model were exactly the sum kernel, the range defined
by (6.8) would simply cover all large times.

Let us then analyse the behaviour of the exact relation (3.9) connectingt andθ for θ
large with respect to one but not with respect to(1− q)−1, see (3.9). In this time range the
approximate relationt = T (q) eθ given in section 3 cannot be used. Let us now set

ε = 1− (1− q)θ. (6.9)

Note that small positiveε correspond to the limit of large but intermediate times, for which
our model, see (1.4), is expected to behave similarly to the linear sum model characterized by
(6.2). In appendix D it is shown that

dt

dθ
= M0(t)

−1 = 1

1− (1− q)θ
{
1 + O

[
(b/ε2) ln3(ε2/b)

]}
. (6.10)

Therefore, it is seen that dt/dθ and hence the zeroth moment are close to the expression for the
linear sum kernel as long asε2� b. As is further shown in appendix D, one has the following
approximate expression fort (θ):

t (θ) = 1

1− q ln[1− (1− q)θ ]−1
[
1 + O(bε−2+1)

]
(6.11a)

for arbitrary1 > 0. Thus it is seen that the relation betweent andθ is again close to the one
that exists for the linear sum case, as long asε2� b or equivalently

t � ln b−1

2b
be−2bt � 1 (6.11b)

which can clearly only be satisfied ifb � 1. Note that this result might have been expected on
intuitive grounds: indeed, for the sum kernelb(k+l), the typical sizes(t)goes as e2bt , as is seen,
for example, from the behaviour ofµ2(t), see (6.4). Thus, for times at which (6.11) is violated,
the typical size in the sum kernel is larger thanb−1, so that the correspondence between the sum
kernel (6.2) and ours is lost. On the other hand, the scaling behaviour described in section 4
is recovered as soon as

(1− q)θ � 1 (6.12)

since this is the necessary condition to neglect the summands withr > 1 in (3.9). Equivalently,
this gives the requirement thatt � exp(1/b). There is clearly a very large range of intermediate
times lnb−1/(2b) � t � exp(1/b). For these, however, I do not know whether a simple
description is possible at all. Further work is needed to analyse this transition range.

So far, I have only discussed the relation betweent andθ in our model in the time range
(6.11) and in the linear sum kernel case. Now I discuss the relation between theφj (θ) in our
model and the corresponding functions for the linear sum kernel. The first and most obvious
remark refers to the recursive nature of equations (3.2). From (3.2) it follows that for any
fixed j

φj (θ) = φ(0)j (θ)
[
1 + O(b2θ)

]
. (6.13)

This is a peculiar result: the true linear sum kernel has no physical solution beyondbθ = 1. On
the other hand, the closeness between the solution of our kernel and the analytical continuation
of the solution for the linear sum kernel persists well beyond this limit, as long as we restrict
our attention tofixed j only. It should be pointed out that the constant implied by the error
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term O(b2θ) is non-uniform inj , that is, for large values ofj , the prefactor in this error term
may well become large.

On the other hand, it is immediately clear that (6.13) cannot hold for allj as soon as
bθ is larger than unity, since in that case allφj (θ) would be monotonically decreasing, in
contradiction to the normalization condition

∑∞
j=1 φj = 1 implied by the definition ofφj

(3.1a). Thus, as soon asbθ passes unity,φj (θ) must deviate fromφ(0)j (bθ) significantly for
sufficiently largej , though for any fixed value ofj , the two functions remain close up tobθ
of the order of 1/b. Note further that this result has only minor implications for the functions
cj (t), since these are connected to theφj (θ) by the change of variables (3.1a) which destroys
the connection implied by (6.13), since it involvesM0(t), which in turn involves arbitrary
values ofj .

A remark concerning the opposite extreme is also easy to derive: namely, for any value
of t , no matter how small, there are values ofj so large that the qualitative behaviour of the
linear sum kernel (6.2) differs from that predicted for ours. This can be seen as follows. For
j → ∞ at fixed time, the asymptotic behaviour of the linear sum kernel is such that there is
ana(t) > 1 so that, for all timest

lim
j→∞

j3/2cj (t) a(t)
j (6.14)

exists and is a finite positive number. On the other hand, in our kernel, it is apparent from
(3.7c) and (3.7d) that the generating function is the quotient of two entire functions. Thus the
singularities in the complex plane can only be poles. Using (4.5), one convinces oneself that,
for smallθ , 1 +S(ζ, θ) can only have a simple zero, whereas for large times this follows from
the analysis in section 4. Whether multiple zeros are possible at all is doubtful. From this
follows, using standard Tauberian theorems [12], that there is ana(t) > 1 so that

lim
j→∞

cj (t) a(t)
j (6.15)

exists and is a finite positive number. Thus the behaviour at largej of the two systems is quite
different. (This was to be expected on the grounds of qualitative arguments, which show that
this behaviour depends only on the asymptotic degree of homogeneity of the kernel [13].)

I now wish to estimate the range of times over which allφj (θ) which contribute
significantly to the total mass remain close toφ(0)j (θ) for a given value ofb as well as the
time range over which the various moments of our system behave similarly to those of the
linear sum kernel. It is shown in appendix E that

|Mn(θ)− µn(θ)| = O[b2ε−2(n−1)]. (6.16)

One finds, from the exact solution of the linear sum kernel, that

µn(θ) = O[ε−(2n−3)]. (6.17)

Thus, as long asb2 � ε, one sees from (6.16) and (6.17) that the difference between the
two moments is much less than the moments themselves. Thus our kernel is again well
approximated for all moments of fixed ordern as long asb2� ε, which is the same condition
stated in (6.11a) and (6.11b). Again, the above estimates are not uniform inn, so that even
for small times, it is presumably possible to find moments in which the two kernels deviate
significantly. The ordern of these moments would, however, go to infinity asb → 0. This
is linked with the fact, already discussed above, that the concentrations corresponding to very
large aggregates are always different for the two kernels.

If the typical size is defined byM2(t), one sees from (3.14) and the above considerations
that the typical size reached whenε is of the order ofb−1/2 is of the order ofb−1 both in our
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systems and in the linear sum kernel. Thus one sees that the analogy of behaviour between
the linear sum kernel model and our model is lost once the typical size goes beyondb−1. This
was, of course, to be expected, since the approximate equality

K(j, k) = b(j + k)[1 + O(bj, bk)] (6.18)

fails whenj or k becomes of the order ofb−1.

7. Conclusions

To sum up, I have analysed the explicit solution of the Smoluchowski equations for the kinetics
of aggregation found in an earlier paper [1], with respect to its scaling properties. This solution
was for the case in which the reaction rates are given by

K(j, k) = 2− qj − qk. (7.1)

This kernel has the remarkable property of interpolating, in the limit whenq → 1, between
two well studied kernels, namely the constant kernel and the linear sum kernel. Further, it
can be viewed as a correction to the constant kernel, thus allowing one to test whether the
predictions of scaling theory concerning the universality of behaviour for large times and large
values ofj are indeed satisfied.

The results are complicated and in a sense mixed. Thus, for example, the large-time
behaviour at fixedj is very different indeed, since one has

cj (t) = [t/T (q)]−(2−q
j )

T (q)(q; q)j−1
[1 + o(1)] (7.2)

in contradistinction to the constant kernel, for which at long times allcj (t) decay ast−2, that
is, with the same exponents, and furthermore with the same prefactor. Here all the exponents
depend onj and the amplitude as well. However, as was shown in section 4, a rigorous scaling
result does hold for our system also, and it is identical to the corresponding one for the constant
kernel, namely

lim
j→∞

j2cj (j/x) = x2e−x. (7.3)

However, for the constant kernel the results of (7.3) can actually be extended down to the case
wherej is fixed andt →∞. As (7.2) shows, this is not the case for our model.

Finally, I studied the limiting behaviour of the functionscj (t) in the limitq → 1, for which
the kernel shows a transient behaviour similar to that of the linear sum kernel. Such transients
are of physical interest, since they occur, for example, when an aggregation process passes
from being dominated by molecular diffusion to being driven by sedimentation. Again the
picture is quite complex: for fixed values ofj , the similarity between the solutions of our kernel
and those of the linear kernel extendbeyondthe times for which the solutions of the linear sum
kernel are physically meaningful! This must, of course, be taken to mean that our solutions
coincide with the analytic continuation of the linear sum kernel solution, even when the latter
has ceased to represent a solution of the equations. This is presumably to be interpreted as a
phenomenon akin to that of gelation: there, in some cases (Flory model of gelation [14]), the
analytical continuation of the solution remains meaningful even at times for which it fails to
keep constant mass. In the case of gelation, this is due to the presence of an infinite cluster
which takes up the remaining mass. In the case of our model, the analytical continuation of the
solution of the linear sum kernel also fails to preserve mass, but the remaining mass is simply
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taken up by clusters, the mass of which increases to infinity asq → 1. These actually make
up most of the mass, so no contradiction is involved.

On the other hand, if one wishes to know when the low-order moments are the same
for both model, one finds that this is exactly the case as long as the typical size is less than
(1− q)−1 in either of the two systems. However, it should be emphasized that this similarity
only holds for thosecj (t) which contribute significantly to the mass. If one goes at fixedt to
arbitrarily high values ofj , and thus far beyond the typical size at timet , one will always find
great differences between the two models, no matter how smallt is.
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Appendix A

Here I show how the solutions of (1.2) in the constant kernel case approach the scaling limit for
arbitrary initial conditionscj (0), as long as thecj (0) decay exponentially inj and the greatest
common denominator of those values ofj for which cj (t) 6= 0 is one. For definiteness’ sake
I will further assume that the total mass is equal to unity, that is

∞∑
j=1

jcj (0) = 1. (A.1)

To solve (1.2) in the case

K(k, l) = 2

for arbitrary initial conditionscj (0), one introduces

G(ζ, t) =
∞∑
j=1

cj (0)(ζ
j − 1). (A.2)

In [15] it is shown that

G(ζ, t) = g(ζ )

1− tg(ζ ) (A.3)

where

g(ζ ) =
∞∑
j=1

cj (0)(ζ
j − 1). (A.4)

From the assumptions made oncj (0), it follows thatg(ζ ) is an analytic function on a disc of
radiusR with R > 1 and that on any circumference of radiusρ < R it takes a strict maximum
atρ. It therefore follows thatg(ζ ) has a zero atζ = 1, and further, that there exists anR1 > 1
such that any zeros ofg(ζ ) have an absolute value greater thanR1. From Rouch́e’s theorem it
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follows that the zeros of 1−tg(ζ ) all lie at a distance of the order of 1/t from the corresponding
zero ofg(ζ ). From this it follows that there is anR2 > 1 such that there is only one zero of
1− tg(ζ ) inside the circle of radiusR2. From (A.1) and Cauchy’s theorem one obtains

cj (t) = 1

2π i

∫
|ζ |=R2

g(ζ )

ζ j+1[1− tg(ζ )] dζ − Res
ζ=ζ0(t)

g(ζ )

[1− tg(ζ )]ζ j+1
(A.5)

whereζ0(t) is the zero of 1− tg(ζ ) closest toζ = 1. This can be evaluated as follows:

1/t = g[ζ0(t)] = g′(1)[ζ0(t)− 1] + O(t−2) (A.6)

from which follows, since

g′(1) =
∞∑
j=1

jcj (0) = 1 (A.7)

that

ζ0(t) = 1 + t−1 + O(t−2). (A.8)

One now needs to evaluate the residue in (A.5) as well as to estimate the integral. The residue
is given by

− Res
ζ=ζ0(t)

g(ζ )

[1− tg(ζ )]ζ j+1
= g[ζ0(t)]

tg′[ζ0(t)]ζ0(t)j+1

= t−2
[
1 + t−1 + O(t−2)

]−(j+1)

= t−2e−j/t
[
1 + O(j/t2)

]
(A.9)

for larget . As for the integral, it can be estimated as follows:∣∣∣∣ 1

2π i

∫
|ζ |=R2

g(ζ )

1− tg(ζ )
dζ

ζ j+1

∣∣∣∣ 6 1

2π

∫
ζ=R2

∣∣∣∣ g(ζ )

1− tg(ζ ) −
g(0)

1− tg(0)
∣∣∣∣ dζ

R
−(j+1)
2

= O(t−2R
−j−1
2 ]. (A.10)

From (A.10) and (A.9) the result readily follows.

Appendix B

Here we prove the identity (4.4). Iff (z) is holomorphic inside a circle with convergence
radius larger than unity, one has for 0< q < 1,

f (qr) =
∞∑
m=0

f (m)(0)

m!
qrm (r > 0). (B.1)

Since the convergence in (B.1) is absolute, we can insert this expression in the left-hand side
of (4.4) and interchange the order of summation obtaining thereby

1

eq(qζ )

∑
r=0

qrζ f (qr)

(q; q)r =
1

eq(qζ )

∞∑
m=0

f (m)(0)

m!

∞∑
r=0

qr(m+ζ )

(q; q)r

= 1

eq(qζ )

∞∑
m=0

f (m)(0)

m!
eq(q

m+ζ )

=
∞∑
m=0

f (m)(0)

m!
(qζ ; q)m (B.2)

which is just the formula we set out to prove. Note that in the second line we used the definition
of theq-exponential as a sum, see (3.5b), and in the third line its definition as a product, see
(3.5a).
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Appendix C

In the following, I will prove the various statements made in section 4 concerning the
distribution of zeros of the functionR(ζ, θ) defined by (4.6). For largeθ , one compares
R(ζ, θ) with

R0(ζ, θ) = 1 + (1− q−ζ )t. (C.1)

Here and in the following, I shall mix the use oft andθ freely, it being always understood that
the two are related through equations (3.9). Defineζ0(t) as the zero ofR0(ζ, θ) nearest to the
origin. Clearly,

ζ0(t) = 1

b
ln[(1− 1/t)−1]. (C.2)

Next let us introduce the following notation:

G(ζ, θ) = S(ζ, θ)

1− q−ζ (C.3)

from which, via (3.9) I obtain

t = G(0, θ). (C.4)

Hence ∣∣R(ζ, θ)− R0(ζ, θ)
∣∣ = ∣∣1− q−ζ ∣∣∣∣G(ζ, θ)−G(0, θ)∣∣. (C.5)

Using Cauchy’s inequality, one now finds, takingZ to be any real number greater than|ζ | but
less than unity,

|ζ | < Z < 1 (C.6)

that there holds the inequality∣∣G(ζ, θ)−G(0, θ)∣∣ 6 ζ

Z − ζ max
|ζ ′|=Z

∣∣G(ζ ′, θ)∣∣. (C.7)

I now estimateG(ζ, θ) from above for|ζ | = Z at large times,

|G(ζ, θ)| 6 K0(Z, q)

∞∑
r=0

q−rZ

(q; q)r (e
θqr − 1) (C.8)

where

K0(Z, q) = max
ζ ′=Z

∣∣eq(q−ζ ′)∣∣−1
. (C.9)

If one now introduces a numberM such that

q 6 θqM 6 1 (C.10)

and uses the inequality

|ex − 1| 6 Kx (06 x 6 1) (C.11)

where

K = e − 1 (C.12)
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one obtains from (C.8)

|G(ζ, θ)| 6 KK0(Z, q)

M−1∑
r=0

q−rZ

(q; q)r (e
θqr − 1) +

KK0(Z, q)

(q; q)∞
∞∑
r=M

qr(1−Z)θ

6 K1q
−MZeθ +K2θ (C.13)

sinceZ < 1. HereK1 andK2 are abbreviations for constants in which some prefactors have
been absorbed for simplicity of notation. From (C.10) one now obtains for larget

|G(ζ, θ)| = O(t ln t) (C.14)

uniformly in ζ as long as|ζ | < Z. Using (C.5), (C.7) and (C.14) one finally obtains∣∣R(ζ, θ)− R0(ζ, θ)
∣∣ < K3(t)

|ζ(1− q−ζ )|
|Z − ζ | = O[K3(t)ζ

2] (C.15)

the last equality being valid forζ appropriately small, and

K3(t) = O(t ln t) (C.16)

for t large. Now one defines the following (time-dependent) contourCt aroundζ0(t), see
(C.2): ∣∣q−ζ − q−ζ0(t)

∣∣ = K4(t)

t

|ζ(1− q−ζ )|
|Z − ζ | . (C.17)

If I now choose

K4(t) = CK3(t) (C.18)

with C > 1 a positive real number larger than unity, it follows that

|R0(ζ, θ)| =
∣∣1 + (1− q−ζ )t∣∣
= t∣∣q−ζ0(t) − q−ζ ∣∣
= K4(t)ζ

2. (C.19)

From this it follows that

|R(ζ, θ)− R0(ζ, θ)| < |R0(ζ, θ)| (C.20)

onCt , so that by the argument principle (Rouché’s theorem),R(ζ, θ) has the same number of
zeros asR0(ζ, θ) within Ct , namely exactly one. This fact allows one to locate accurately the
zero ofR(ζ, θ) and hence the singularity inH(ζ, θ) at large times. Indeed, from (C.2) there
follows

ζ0(t) = 1

bt

[
1 + O(t−1)

]
. (C.21)

From (C.17) there follows that, if one denotes byζs(t) the zero ofR(ζ, θ), then for large times∣∣ζs(t)− ζ0(t)
∣∣ 6 K4(t)

t

|ζs(t)(1− q−ζs (t))|
|Z − ζs(t)| = O(t−2 ln t). (C.22)

Thus it follows that

ζs(t) = 1

bt

[
1 + O(t−1 ln t)

]
. (C.23)

It would, obviously, be interesting to know whether the logarithmic correction could be
dispensed with. The problem, however, seems to be difficult.
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Now note that the above inequalities do not requireζ to be arbitrary small. In fact, ifK4(t)

is taken to grow linearly ast , one finds that there is a neighbourhood of the imaginary axis,
of width of the order of one, such that no zeros ofR(ζ, θ) are found within it, save those of
the formζs(t) + 2π ik/b for arbitrary integer values ofk. Thus we have shown all the required
properties of the zeros ofR(ζ, θ) and the consequences stated in section 4 concerning the
scaling behaviour of the solution follow.

Appendix D

In this appendix I show how an approximate connection betweent andθ can be derived for
b � 1 and moderate timest . To this end I use an expression for dt/dθ , which can be derived
from (3.9) using the identity (4.4),

dt

dθ
=
∞∑
m=0

θm

m!
(q; q)m. (D.1)

If one now assumes that(1−q)θ is less than unity, then the following inequalities can be used

lql 6 1− ql
1− q 6 l (D.2)

which lead to

(1− q)mqm(m+1)/2m! 6 (q; q)m 6 (1− q)mm!. (D.3)

Substituting in (D.1), this gives
∞∑
m=0

[(1− q)θ ]mqm(m+1)/2 6 dt

dθ
6
∞∑
m=0

[(1− q)θ ]m = 1

1− (1− q)θ . (D.4)

From these inequalities, it follows that for(1 − q)θ less than unity, dt/dθ can be well
approximated by the right-hand side of (D.4). More precisely∣∣∣∣ dt

dθ
− 1

1− (1− q)θ
∣∣∣∣ 6 ∞∑

m=0

[(1− q)θ ]m
[
1− qm(m+1)/2

]
6

M−1∑
m=0

[1− qm(m+1)/2] +
∞∑

m=M
[(1− q)θ ]m

6 M
[
1− qM(M−1)/2

]
+

[(1− q)θ ]M

1− (1− q)θ (D.5)

whereM can be chosen arbitrarily.
To obtain the sharpest possible result from (D.4), let us choose, definingε as in (6.9):

M = ln(ε2b−1)

ε
. (D.6)

One then obtains
dt

dθ
= 1

1− (1− q)θ {1 + O[(b/ε2) ln3(ε2/b)]} (D.7)

as stated in the text. Inequality (D.5) can also be integrated term by term to yield

t (θ) = 1

1− q ln
[
1− (1− q)θ]−1[

1 + O(bε−2+1)
]
. (D.8)

Thus all the results stated in the text are shown.
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Appendix E

In this appendix, I wish to estimate the difference between the two kernels for those values
of j which contribute significantly to the mass. Specifically, I wish to estimate the difference
betweenMn(t) andµn(t). To this end, one estimates the difference between the two generating
functions for small positive values ofζ , yet for values ofζ which are not very close to the
singularity. This singles out those values ofj which contribute most to all moments (since
moments correspond to derivatives of the generating functions at the origin) and hence provides
the solution to our problem.

This is done as follows. Rewriting the basic equation forH(ζ, θ) derived in [1]
(equation (2.18)) in terms of̃H(ζ, θ) one finds

∂H̃

∂θ
(ζ, θ) = H̃ (ζ, θ)[H̃ (ζ, θ)− H̃ (ζ − b, θ)] (E.1)

as long asζ is less than the nearest singularity, which is on the real axis, since all the coefficients
of the Taylor series ofH̃ (ζ, θ) are positive. Under these circumstances, one can rewrite the
difference as follows:

H̃ (ζ, θ)− H̃ (ζ − b, θ) = b∂H̃
∂ζ
(ζ, θ)− b2

2π i

∫
C

H̃ (w)

(w − ζ )2(w − ζ + b)
dw (E.2)

whereC is a contour enclosing bothb and the origin. For the linear sum kernel, standard
manipulations using the same variable transformations as used in the beginning of section 2
lead to

∂H̃0

∂θ
(ζ, θ) = bH̃0(ζ, θ)

∂H̃0

∂ζ
(ζ, θ) (E.3)

where

H̃0(ζ, θ) =
∞∑
j=1

φ
(0)
j (θ) ejζ . (E.4)

One then needs to estimate the difference betweenH̃0(ζ, θ) andH̃ (ζ, θ). Equation (E.3) can
be solved using the method of characteristics, to yield the following implicit solution: using
an initial condition corresponding to (1.3),

H̃0(ζ, 0) = eζ − 1 (E.5)

one obtains

H̃0[ζ − (eζ − 1)bθ, θ ] = eζ − 1. (E.6)

Now define

χ(ζ, θ) = ζ − bθ(eζ − 1). (E.7)

This function reaches a maximum value at

ζc(θ) = − ln bθ = ε + O(ε2) (E.8)

which is greater than zero as long asbθ < 1, which contains the range of interest. One has

χc(θ) ≡ χ [ζc(θ), θ ] = − ln(bθ e1−bθ ) = ε2/2 + O(ε3). (E.9)
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Thus the functionχ(ζ, θ) can be inverted as long asχ < χc(θ) or equivalentlyζ < ζc(θ).
The inverse, which is denoted byζ(χ, θ), is then chosen to be the branch such that

ζ(0, θ) = 0. (E.10)

From (E.6) and the above definitions it follows that

H̃0[χ(ζ, θ), θ ] = eζ − 1 (E.11)

or equivalently,

H̃0(χ, θ) = exp[ζ(χ, θ)] − 1. (E.12)

One then considers the function

E(ζ, θ) = H̃ [ζ − (eζ − 1)bθ, θ ] − (eζ − 1) (E.13)

as a measure of the deviation between the approximate and the true functions. Substituting in
(E.1) one finds the following equation forE(ζ, θ):

∂E

∂θ
(ζ, θ) = bE(ζ, θ)∂H̃

∂ζ
[χ(ζ, θ), θ ] + H̃ [χ(ζ, θ), θ ]

×
{
H̃ [χ(ζ, θ), θ ] − H̃ [χ(ζ, θ)− b, θ ] − b∂H̃

∂ζ
[χ(ζ, θ), θ ]

}
. (E.14)

As long as the series for̃H(ζ, θ) converges, the last term in brackets is always negative, since
H̃ (ζ, θ) is a series with positive coefficients. From this it follows that

E(ζ, θ) 6 0 (E.15)

as long as the series for̃H(ζ, θ) remains convergent andζ is real and positive. Hence, for
ζ < ζc(θ) real positive, one has

H̃ (χ, θ) 6 H̃0(χ, θ) = exp[ζ(χ, θ), θ ] − 1= O(ε). (E.16)

Therefore,H̃ (χ, θ) has no singularities forχ < χc(θ), so that (E.16) is valid in this range. In
the following, I shall limit myself to a range ofζ uniformly bounded away fromζc(θ), such as

0< ζ 6 ζ1(θ) = ζc(θ)/2. (E.17)

From inequality (E.16), various estimates on the derivatives and the differences ofH̃ (ζ, θ)

can be derived using Cauchy’s integral formula. Indeed,∣∣∣∣∂H̃ (ζ, θ)∂ζ

∣∣∣∣ 6 1

2π

∫
C

|H̃ (χ, θ)|
|χ − χ(ζ, θ)|2

6 | exp{ζ [χ1(θ), θ ]} − 1|O[χ1(θ)
−1] = O(ε−1) (E.18)

where

χ1(θ) = χ [ζ1(θ), θ ] = O(ε2) (E.19)

andC is a contour chosen to lie entirely to the left ofχ1(θ) but surroundingχ(ζ, θ). This is
possible as long asbθ < 1, which will always be assumed hereinafter.

Similarly, one obtains for the difference∣∣∣∣H̃ (χ, θ)− H̃ (χ − b, θ)− b∂H̃ (χ, θ)∂χ

∣∣∣∣ 6 b2

2π

∫
C

|H̃ (w, θ)|
|w − χ |2|w − χ + b| (E.20)
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whereC is a contour as in (E.18). One then estimates the right-hand side of (E.20) from above
by

b2χ1(θ)H [χ1(θ), θ ]

(2π)minw∈C |w − χ |3 = O(b2ε−3). (E.21)

Thus one obtains, from (E.14)

∂E(ζ, θ)

∂θ
= bE(ζ, θ)∂H̃

∂ζ
[χ(ζ, θ)] + O(b2ε−2) (E.22)

and hence

|E(ζ, θ)| = O(b2ε−2) (E.23)

uniformly for all ζ < ζ(χ1(θ), θ).
From this, one obtains the following estimate on the difference between the exact moments

of our model and the corresponding moments of the linear sum model. Let

µn(θ) =
∞∑
j=1

jnφ
(0)
j (θ)

= n!

2π

∫
C

H̃0(χ, θ)

χn+1
dχ

= n!

2π

∫
C

exp[ζ(χ, θ)] − 1

χn+1
dχ (E.24)

whereC is a contour entirely to the left ofχ1(θ) but surrounding the origin.
From this one obtains

|Mn(θ)− µn(θ)| 6 n!

2π

∫
C

|E[ζ(χ, θ), θ ]|
|χ |n+1

dχ (E.25)

where again the contourC is to the left ofχ1(θ) and surrounds the origin. From the above
estimates one concludes that

|Mn(θ)− µn(θ)| = O[b2ε−2(n−1)] (E.26)

as stated in the text.
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